I. Invo to Schemes
· Setting: A ring, Spec (A) topological space whose points are prime ideals of A, basis of Open
sets given by the sets D(f):= {P: P:s prime : deal vith f & P} for each f EA.
• I unique sheat of rings Θ_X on $X = Spec(A)$ such that $\Theta_X(D(f)) = A_F$ for all nonzero $f \in A$.
Call (X, Ox) the affine schene associated with A; Ox the structure sheaf.
the stalk Ox, x of Ox at x is
$\frac{\prod_{x \in U} \mathcal{O}_{x}(U)}{if \exists W \in U \cap V} \text{with} f _{x \in \mathcal{O}_{x}(V)}$
/ · · · · · · · · · · · · · · · · · · ·
ringed spaces satisfying stalks are local rings is called a locally ringed space.
• marphism of ringed spaces : a pair $(\phi, \phi^{\#})$, $\phi : X \rightarrow Y$ continuous, $\phi^{\#} : \mathcal{O}_X \rightarrow \Phi_{\#} \mathcal{O}_Y$
La pushformal for each open set); in the case of alfine, 4: A > B, A, B rings, induce
(Sper (4) = Sper (B) → Sper (A), 4).
· a scheme is a locally ringed space (X, Ox) having an open covering Elli: i EI3
such that Vi the locally ringed spaces (Ui, Oxlu;) are isomorphic to affine schemes.
examples:
- K field. Sour (K) = • . shalk of shourting sheal as the adjust is K
Spee 2 has one closed point corresponding to each prime (p) and a non-closed point
Corresponding to 0. Ring of sections of the structure sheaf over an open subset U
is ring of rational numbers with denominator divisible only by primes autside U.
II. Mony many conditions
· A scheme X is integral if for all open subsets U C X the ring Ox (U)
has no zero-divisors.
· Accall: a topological space is irreduible if it cannot be expressed as a nion of two proper closed subsets.
(len) • A scheme X is integral iff it's day 0 in all and in the little
ri united in the much off in its reduced it its underlying space is irreducible.
A integral scheme always has a unique point whose closure is the whole underlying space of the

scheme "generic point". In altine: (0).

. The dimension dim X of a scheme X is the sup of integers for which there exists a

chain Zo & Zi & Zn of irreducible closed subsets properly contained in X.
• The dimension din A of a ring is the dimension of Spee (A)
· A scheme is connected/queri-comparet if its inderlying topological space is
compactness without Housdoff condition
• X locally Noetherian if Stalks Ox.p of its structure sheaf are Noetherian local rings j
+ quasicompact => X Noetherian.
· X normal if stalks Ox, p are integrally closed domains
regulair if Ox,p are regular book rings.
A Noetherian local ring A with maximal ideal m and residue field K = A/m is region
$if \dim_{K} M/M^{2} = \dim A.$
- Dingral space given by (I and Ou: (Ox)] u is also a scheme, the open aborheme
associated with U . Marphism of schemes defined by topological inclusion $j: U \rightarrow X$ and the marphism of
dream O'x > j * Ou gen innersion.
• A morphism $Z \rightarrow X$ of affine schemes is a closed immersion if it corresponds to $A \rightarrow A/I$
for some ICA. Generally, <u>closed innersion</u> of injective with closed image & restrictions to affine
opens yields above.
I. Flore products
· Categorical construction ! Y xx Z, given Y to X and Z to X, :> the digest with marghisms T., The making
· Cartegorical construction ! Y x Z, given Y . X and Z . X, :> the object with morphisms T., The making
Categorical construction ! Y x Z, given Y & X and Z & X, ; 3 the object with morphisms T, , The making Y x Z _ The Z
Cortegorical construction ! $Y \times_{k} Z$, given $Y \stackrel{e}{=} X$ and $Z \stackrel{q}{=} S X$, ;3 the object with morphisms π_{i} , π_{i} making $Y \times_{k} Z \stackrel{\pi_{k}}{=} Z$ $\pi_{i} \int \int Q$
• Contegorical construction ! $Y \times_{x} Z$, given $Y \stackrel{p}{=} X$ and $Z \stackrel{q}{=} X$, ; s the object with morphisms π_{1} , π_{2} making $Y \times_{x} Z \stackrel{\pi_{2}}{=} Z$ $\pi_{1} \qquad \qquad$
 Categorical construction : Y×x Z, given Y=x x and Z=x X, so the diject with marghisms T, The making Y×x Z - The Z Y×x
 Contegorical constitution ! Y×x Z, given Y → X and Z → X, ;3 the diject with marphisms T., The making Y×x Z _ The Z Y×x Z _ The Z To Tap, this is the addinancy Contesian product with product topology.
 Cartegorical construction ! Y × Z , given Y = X and Z = X, :> the diject with morphisms m. , m. making Y× Z = m. Z m.] [9 Y = f > X commune & is universal with respect to this property. In Top , this is the ordinary Contesian product with product topology. A <u>scheme over X</u> is a morphism Y → X of schemes ; a morphism of schemes over
 Categorical constituction ! Y×x Z, given Y L, X and Z A, ; > the diject with morphisms R, R, R, making Yxx Z _ R, Z R, J [9 Y + → X commute & is universal with respect to this property. In Tap, this is the ordinary Contesian product with product topology. A <u>scheme</u> over X is a morphism Y→ X of schemes ; a morphism of schemes over X is a morphism Y→ Z comparible with projection onto X. Forms a contegory.
 Categorical constituction: Y × Z, given Y + × and Z + ×, is the object with morphisms r., r. matching Y× Z - r. Z u.j 9 Y + × X converse & is universal with respect to this property. In Top, this is the ordinary Contesian product with product topology. A <u>scheme over X</u> is a morphism Y → X of schemes j a morphism of schemes over X :s a morphism Y → Z comparable with projection onto X. Forms a contegory. Fibre products exist in the category of schemes over X ! Call Ti, the base change of

• inclusion marphism ip: Speeck(P)) → X
• the fibre of \$147 X at point P is the scheme Yp:= Y ** Spec (x(P)), the fibre product being taken
with nerpeart to mops \$ 1 ip.
· CAUTION: in general, the melerlying topological space of a filme product of schemes :s NOT the topological
filore product of inderlying topological space!
' K freld, Ks separable closure, LIK separable extension, then Spec(L) × spec(K) Spec(Ks) = Spec(L@KKs)
is a finite disjoint union of copies of spec (Ks), whereas topological fibre is just a point.
• diagonal map $\Delta: 4 \rightarrow 4 \times, 4$ carring from a morphism of echemes $4 \rightarrow \times i$ induced by the columnity
map of Y in both complimentes.
· a mappison 4- X of schenes is separated if the diagonal map is a closed immersion.
A analogous to Housdorff condition in topology.
• \$1: Y = X is locally of finite type if X has on alline open covering by subsets Ui = Spic (Ai)
so shor \$"'((li) has an open covering Vij = Spuc(Bij) with finituly generated Air algebras Bij. It is of finite type
if there is such an open covering with finitely many Vij for each i.
• A separated morphism 4-5 X of schemes is proper if it is of finite type and for every maphism
$2 \rightarrow X$ the base change map $Y_{X_{R}} Z \rightarrow Z$ is a closed map (maps closed subsets.
<u>V</u> . Ux - modules and quosi - continue
• X scheme. A sheaf of Ox-modules is a sheaf of abolian groups F on X such
that for each open (ICX the group F(U) is equipped with an Ox(U) - module structure
$O_{\mathbf{x}}(\mathbf{u}) \times \mathcal{F}(\mathbf{u}) \rightarrow \mathcal{F}(\mathbf{u})$ noting the diagram
$\mathcal{O}_{\mathbf{x}}(\mathbf{u}) \star \mathcal{F}(\mathbf{u}) \longrightarrow \mathcal{F}(\mathbf{u})$
\
$\mathcal{O}_{\mathbf{x}}(\mathbf{v}) \times \mathcal{F}(\mathbf{v}) \longrightarrow \mathcal{F}(\mathbf{v})$
commute for each inclusion of open sets $V \subset U$. IP $F(U)$ ideal in $O_{r}(U)$, shere of ideals.

• $p: X \rightarrow Y$ morphism of schemes. On the level of structure schemes $\phi^{\pm}: \phi_{Y} \rightarrow \phi_{z} \phi_{X}$,

By - module structure on \$# 3x.

Kernel I of marthism \$\$[#]: Oy → \$\$* Ox is a sheaf of ideals on Y.

- len. X = Spee (A) alfine-scheure, M A-module. There is a unique Ox module m satisfying
 m(O(1)) = M & Ap over each bookie open set D(f) < X.
- X scheme. A <u>quosi-coherent sheaf</u> on X is an Ox-module f for which there is open affine cover {Ui} sister that the restriction of F to each Ui = Spee (Ai) is isomorphic to an Oui module of the form Mi with some Ai-module Mi. It each Mi is finitely generated over Ai.
 F is a <u>coherent sheaf</u>. F is <u>boodly free</u> if Mi are free A-modules. Locally free sheaves of rank 1 are inversible sheaves.
- the functor M → M establishes an equivalence of contegories between the category of A modules, and the category of quosi-coherent chemer on X.
- a marphism of schemes ϕ : $X \rightarrow Y$ is affine if Y has a covering by offine open subsets ($l_i = Spec A_i$ such that $\phi^{\gamma}(U_i)$ are all affine,
- · lem. If \$: X + Y is alfine and F is a quasicdenent sheat on X, then \$= F is a quasicoherent
- sheat on Y. If F is wherent and \$ is finite, than \$\$ F is coherent.