Gabis 2023 Day 4 I. Galois covers Recall: A cover of X is a space Y our X with p: Y > X with what V x 6 X 3 open V > x s.t. (V)'-م is a disjoint union of U; , each homeomorphic with V. Def. Let G be a group acting continuous from the left on a topological space 4. The action of G is even if each y e Y has some open neighborhood. U such that the open sorts g U are poinwise disjoint for all g e G. Lem. IP G is a grave acting evenly on a connected space Y, the projection po: Y -> Y/G into a cover of Y/G. Eq. The action of Z on R by translations (2 >> 2+1 for n & Z) given cover R -> R/Z, homeomorphic to a circle. From here, fix space X locally connected (each point has books of ribbel consisting of connected open slopen) Cover p: Y → X, Aut (Y (X) = automorphisms of Y as a space compatible with p: + × × × grap w.r.t. Composition also acts on poi(x) Prop. Z annewed sep. space, Z Y to X answers maps son. pof = pag 3 = 6 Z win f(e)= g(e) =: y = f = q. Exercise! Cor: An automorphism of a connected cover p: Y & X having a fixed point most be sintal. Prop. If G group acting evenly on connected space Y, the automorphism group of the cover Po: Y - CY is precisely G. $A := A_{v+}(Y \mid (G \mid Y)).$ foof : · G is a natural subgray of A · Take $\phi \in A$, look at its action on $y \in Y$. Filmer of p_6 are orbits of G so $\exists q$ s.t. $\phi(y) = gy$. Apply cor. to \$0g" gives \$= q. Prop. If p: Y - X is a connected cover, the action of Aut (Y | X) is even, Exercise! Notice p factors as Y -> Aut (Y|x) Y E X, continuous. Def. A concr p: Y -> X Galois if Y is connected and the induced map p is a homeomorphism Fort: A connected cover p: Y - X is Galois iff Aut (YIX) acts transitive on each filore of p Example: $X = \mathbb{R}^{2}/\mathbb{Z}^{2}$, fix m > 1 integer. Consider $X \xrightarrow{m} X$. Galois cover with group (72/m72)".

Two. Let
$$p: Y + X$$
 be a Gular cover. For each subgroup H of Gr Art (Y1X)
the projection p subtress a matrix map $\overline{p}n$: H/Y + X which three H/Y into
a cover it X:
© Coversely, if Z + X is a connected cover Riting into a connected degreen
 $Y = \frac{4}{2} = 2$
 $N = 11$
Two $8: Y + Z$ is a Golds cover and actually Z & H/Y for the edgesp
H = An (Y12) of Gr. The map H = A/Y · Z + Ari (Y12), Z + Ari (Y12) subtree a bigostim
between subgraps if G and intervalue covers 2. The ever $q: Z - X$ is Gular life H is a
mean subgrap of G. In which are Ari (Z1X) & G/A.
Lem. Assime given a connected cover $q: Z - X$ and a continued map $f: Y + Z$. If the
Graphite $q: f: Y + X$ is a cover, then so is $f: Y + Z$. If the
Graphite $q: f: Y + X$ is a cover, then so is $f: Y + Z$. If the
Graphite $q: f: Y + X$ is a cover. then so is $f: Y + Z$. If the
Graphite $q: f: Y + X$ is a cover. the so is $f: Y + Z$. If the
Graphite $q: f: Y + X$ is a cover. the so is $f: Y + Z$. If the
 $f: f: solutions stree $p: p_0$ one cover
 $f: f: solutions stree $p: p_0$ one cover
 $f: f: solution of F. is $\overline{p}_0: dY + X$ cover.
 $f: f: solution is fine $d: f: Y + Z$ is a cover, if $f: f: solution of F. is $\overline{p}_0: dY + X$ cover.
 $f: f: solution to solve H one coversisting on the fine $d: f.$
 $f: solution to solve H one coversisting on the fine $d: f.$
 $f: solution to solve H one coversisting on the fine $d: f.$
 $f: solve H, one coversisting on $Z: dN^{V}$, preserving prime q . So we
have signed to $G: f(k)$. But contained in filled $p^{T}(q(2))$ is the clube $Y.$
 $f: q \in H.$
 $G - M H coversisting $G: f(k) + Art(Z(X))$. But when $(G/k) \setminus Z = G(Y + X, s)$
 $G/H = Art(Z(X)) on d: q: Z + X + S = Gulas.$$$$$$$$$$$

• Assume $Z \rightarrow X$ is Galais cover.
First show each element of of G = Aut (YIX) induces automorphism of Z over X; final 4:2 -> Z
to matrice y to y
ef ft
Z Z Commute.
۹ ل ل ۹
$x \xrightarrow{id} x$
Take yet with image x= cgof)(y) in X.
 P(y) and f(\$(y)) over in some fibre g⁻¹(2) of q.
 Since Aut(Z X) acts transitively on fibres of q, 3! 4 & Aut(Z X) that 4(f(y)) = f(d(y))
• Hence #of = fo\$ by *.
• $\phi \mapsto \psi$ homom, $G \rightarrow Aut(Z X)$ whose kernel is $H = Aut(Y Z)$, hence normal!
II. The monodromy action
Lem. Let p: Y at be a cover, y a point of Y and x = p(y).
1. Given a parth f: [0, 1] → X with f(0) = x, there is a unique parth f: [0, 1] → Y with f(0) = y and
م• f = f.
2. Second path q:[0,1] → X honotopic to f. Then g:[0,1] → Y with g(0) = y , p • g = g,
we have $\tilde{f}(1) = \tilde{g}(1)$. (actually \tilde{f} , \tilde{g} hanotopic!)
(Proof involves chaning things down using compactness, see book.)
(1000 maines country minutes count conductances, see about.)
Marchan
Monadromy action
Given $y \in p^{-1}(x)$ and $a \in \pi, (X, x)$ represented by a loop $f: [0, 1] \rightarrow X$, define
dy := $\tilde{f}(I)$. Well-defined by lem; left action of $\pi_1(X_3, x)$ on $p^{-1}(x)$.
Functor Fibre from Cartegory of covers of X to cortegory of sets equipped with a left TK, (X, x) -
action: send coner p: Y + X to the fibre p ⁻¹ (x).

Filox indu	oes an	معمدانه. م	of conte	mory of	cover	s & X	with the	category	of left t	(X, x) -	sets.
Connectee											
Galois	Covers	~	Coset	spacer	of	normal	adagroups.				
											193