Galois 2023 Day 2
I. Sane Category Theory
· A cartegory C consists of objects & morphisms between pairs of objects.
Given objects A, B of C, denote the set of morphisms from A to B Hom (A, B), which
are sliger to:
For all algeress A, idla & Hom (A, A)
> Given 4 & Honn (A,B). \$ & Hon (B, C), there exists composition \$ • + & Hom (A, C)
s Green \$6 Hom (A, B), \$0 icly = idly 0 \$\$ = \$
, Guan $\lambda \in Hon(A_1B)$, $\Psi \in Hon(B, C)$, $\emptyset \in Han(C, 0)$, $(\phi \circ \Psi) \circ \lambda = \phi \circ (\Psi \circ \lambda)$.
• \$ \$ Hom (A, B) is an isomorphism if there exerts? 4 \$ Hom (B, A) with 4.0 \$= ida, \$0.4 = ida; Ison (A, B)
• <u>apposite contegory</u> C ^{ep} : "Contegory with the same objects and arrows revenued?" ("preserves id & composition")
product of contegories C, C2: C1 * C2 where objects are pairs (C1, C2) and morphisms are poirs C C2 (\$4, \$4).
· D is a subcategory of C if it contain some objects and some mappisms of C
$- full if for objects A, B \in D, Hong(A, B) = Hong(A, B).$
Some useful examples:
· Serts: Objects are sets, morphisms are set-theoretic maps.
• Ab : Objeurs are abellon groups, morphisms are group homomorphisms.] Subcartegories but
_ Top: Objects are topological graps, marghism are continuous maps.
· (convirunt) functor F between C, , Cz consists of
> A +> F(A) on objects
> Han (A, B) -> Han (F(A), F(B)) on sets of morphism, preserve id and composition.
· contravariant function from C, to Cz is a function from C, to Ca ⁴ .
Ecompter of functors:
· ide - leaves all abjects & morphisms fixed.
· Fix object A of C ; corations Hon (A,) from L to Sets Sending B 4 Hon (A.B),
contravariant Hon(, A) B Hon(B,A)

and
$$\beta: \beta + \zeta$$
 to $|km(A, G) + lm(A, G)$ as an induct by ampairem with di-
 $km(C, A) + km(B, A)$ (Generatin 1)
 $T_{1} = \frac{1}{C} V_{1}$ are denoted a symbol discrete ξ is a collection of mapping in V_{0} $\xi_{1}: F(d) + G(d)$
 $\frac{1}{2}$ and against A and have
 $F(d) = \frac{1}{2} G(d)$
 $F(d) =$

• F: C → Sets is representable if 3 object C & C and an isomorphism of function F ≅ Hom (C,).
t t
"representing skjeet"
Yoneda Lemma. If F, G are finden X - Sets represented by dijects C and D resp., every morphism Z: F-G
is induced by a unique morphism D-C.
Proof. Previte $\overline{a}:F(C) \rightarrow G(C)$ on $Hom(C, C) \rightarrow Hom(D, C)$.
Image of $:d_{c} \in Hom(C, C)$ identifies $p: D \rightarrow C$; this induces $\overline{\Phi}$:
for object A each element of F(A) = Hom (C, A) ; dentifies with momphism \$\$: C > A
which is the image of ide 6 from $(C, C) \cong F(C)$ via $F(\phi)$. As $\overline{\Phi}$ is a morphism
of functors, $\Phi_{A}(\phi) = G(\phi)(\rho)$ which under the isomorphism corresponds exactly to $\phi \circ \rho$.
Cor. The representing dijout of a representable known F is velope up to unjue tomorphism.
I. Intro to Snearer
• X top. space. A prestread (of sets) F on X is the data;
> For each open UCX, a set F(U)
> V c U a map par: F(u) -> F(v);
Prece identity , prev = free o fer WeveU.
· Elements of F(U) called sections of Fover U.
. Can have presheat of groups, ab. groups, rings etc. with F(U) being shove things and maps
homomorphisms.
• preshcaves on fixed top, space form a category
example: cont. real-valued functions defined locally on open educts of X. Pur given by restriction of functions.
• A presheaf F is a streage if it sortisfies
> Given nonempty le & convering Elliz, 2f site PELLI sourisfy slui = tlui for all i,
then s= t.
· Given (Ui), system of sections (S; EF(U:)), and Silvinus = Sjlvinus whenever UinUj * 4,
I se F(U) such that slu; = s; for all is by above, surjeve.