The Proof of the Nilpotence Theorem

Rushil Mallarapu

August 11, 2022

Rush	il Ma	llarapu
------	-------	---------

Proof of Nilpotence

August 11, 2022

Outline

Statement and Outline

2 Step I: Vanishing Lines

- 3 Step II: Thom Spectra
- 4 Vistas and Outlooks

(a)

э

Statements

Theorem (Nilpotence – Strong Form)

Let R be a ring spectrum, and $h: \pi_* R \to MU_* R$ be the Hurewicz map. Then ker h consists of nilpotent elements.

Theorem (Nilpotence – Smash Product Form)

Let $f: F \to X$ be a map from a finite spectrum to an arbitrary one. If $1_{MU} \wedge f$ is null, then f is smash nilpotent; i.e. $f^{\wedge k} = 0$ for large enough k.

< □ > < 同 > < 回 > < 回 > < 回 >

Reducing to Weak Nilpotence

Theorem (Nilpotence – Weak Form)

Let R be a connective associative ring spectrum of finite type. Then ker h consists of nilpotent elements.

This implies the smash product form!

Proof.

Reduce to the case $F = S^0$ by Spanier-Whitehead duality. Since MU is a ring spectrum, $1_{MU} \wedge f$ is null iff $S^0 \xrightarrow{f} X \to MU \wedge X$ is. As X is a colimit of finite spectra, we can reduce to a finite spectrum. Replacing the target by its free monoid lets us apply weak nilpotence; knowing that $1_{MU} \wedge f$ is null, we conclude f is smash nilpotent!

(a)

The Key Characters

Define ring spectra X(n) by taking the Thom spectra of $\Omega SU(n) \rightarrow \Omega SU \rightarrow BU$. Then $X(1) = S^0$ and $MU = \lim_{n \to \infty} X(n)$.

Theorem

For R satisfying weak nilpotence conditions, and $\alpha \in \pi_*R$, if $X(n+1)_*\alpha$ is zero, then $X(n)_*\alpha$ is nilpotent.

Proof.

If $h(\alpha) = 0$, then because $MU = \lim_{n \to \infty} X(n)$, $X(n+1)_*\alpha = 0$ for sufficiently large *n*. By the above, we conclude that $X(1)_*\alpha = \alpha = 0$.

イロト イポト イヨト イヨト

Plan of Attack

As it turns out, $\langle X(n) \rangle > \langle X(n+1) \rangle$, so we'll need to interpolate further via spectra G_k .

- Step I: Show that if $h(n+1)_*(\alpha) = 0$, then $G_k \wedge \alpha^{-1}R = 0$ for large enough k.
- Steps II: Show that $\langle G_k \rangle = \langle X(n) \rangle$ for all k.
- Observe that for E a ring, $E \wedge \alpha^{-1}R = 0$ implies E-Hurewicz image of α is nilpotent. (This is easy.)

Steps I and II are very technical!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

2 Step I: Vanishing Lines

- 3 Step II: Thom Spectra
- 4 Vistas and Outlooks

(a)

э

Properties of X(n)

Definition

The James construction JX on a based complex X is the free unital monoid on X. It admits a filtration $J_k X = im(X^{\times k} \to JX)$, and $JX = \lim_{K \to K} J_k X$. In fact, $JX \simeq \Omega \Sigma X$.

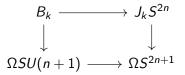
In particular, we can interpolate X(n + 1) to X(n) via the James filtration associated to the fiber sequence

$$\Omega SU(n)
ightarrow \Omega SU(n+1)
ightarrow \Omega S^{2n+1}$$

イロト イ団ト イヨト イヨト

Properties of X(n)

Define B_k via the pullback



Let F_k be Thom spectra of the lower composite, and set $G_k := F_{p^k-1}$.

AHSS computations will show that $X(n+1)_*X(n+1)$ and $X(n+1)_*G_k$ are flat over $X(n+1)_*$.

Vanishing Lines in ANSS

Want $G_k \wedge \alpha^{-1}R = 0$. Let's force things in X(n+1)-ANSS to vanish!

Theorem

Let M be a connective $X(n+1)_*X(n+1)$ -comodule of finite type. Then

$$E^{s,t} = \operatorname{Ext}_{X(n+1)_*X(n+1)}^{s,t} \left(X(n+1)_*, X(n+1)_* G_k \otimes_{X(n+1)_*} M \right),$$

has a vanishing line of slope going to zero as k increases. Specifically, for any small slope 1/m, there exists k and c such that $E^{s,t} = 0$ whenever t - s < ms - c.

Proof of Step I

Finally: π_*R acts on $\pi_*G_k \wedge R$. We want to show that for every $\beta \in \pi_*G_k \wedge R$, there exists an *m* such that $\beta \alpha^m = 0$.

Consider the two X(n+1)-ANSS E_2 's

$$E_2^{s,t} = \mathsf{Ext}_{X(n+1)_*X(n+1)}^{s,t} (X(n+1)_*, X(n+1)_*R) \implies \pi_*R,$$

$$E_2^{s,t} = \operatorname{Ext}_{X(n+1)_*X(n+1)}^{s,t} (X(n+1)_*, X(n+1)_*G_k \wedge R) \implies \pi_*G_k \wedge R.$$

Because $X(n+1)_*\alpha = 0$, it is detected by some $a \in \operatorname{Ext}^{s,t}(R)$, for s > 0. Choose k so that the Ext for $M = X(n+1)_*R$ has a vanishing line of slope less than s/(t-s).

Rushil Mallarapu

Proof of Step I

By flatness,

$$X(n+1)_*G_k \wedge R = X(n+1)_*G_k \otimes_{X(n+1)_*} X(n+1)_*R,$$

so the E_2 of the ANSS for $\pi_*G_k \wedge R$ has such a vanishing line!

Let $\beta \in \pi_*G_k \wedge R$ be detected by some $b \in E_2^{u,v}$. Then, if $\beta \alpha^m = 0$, it must be detected by an element in $E_2^{u+ms+j,v+mt+j}$ for $j \ge 0$. By our vanishing line, this will be zero for *m* large. Thus, $\beta \alpha^m = 0$, and we are done!

Outline

2 Step I: Vanishing Lines

- Step II: Thom Spectra
 - 4 Vistas and Outlooks

э

13/23

(a)

The Strategy

We'll start by constructing a self-map b of G_k such that its cofiber is G_{k+1} .

Theorem

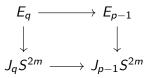
Given X and self-map $g \colon \Sigma^d X \to X$, then $\langle X \rangle = \langle \operatorname{colim} \Sigma^{-id} X \rangle \lor \langle C(g) \rangle$.

Thus, we'll end up with $\langle G_k \rangle = \langle G_{k+1} \rangle \vee \langle b^{-1}G_k \rangle$. Then, we show $b^{-1}G_k = 0$ and we're done!

イロト イヨト イヨト イヨト

Constructing the Self-map

We are given $\xi: E_{p=1} \to BU$, and suppose we have a fibration $E_{p-1} \rightarrow J_{p-1}S^{2m}$. For $0 \le q \le p-1$, let E_q be the pullback



Iterating, we get a filtration $E_0 \subset E_1 \subset \ldots \subset E_{p-1}$. This gives a filtration of E_{p-1}^{ξ} by the E_q^{ξ} .

Constructing the Self-map

From here, one can define equivalences $\theta_{p-1} \colon E_{p-1}^{\xi}/E_{p-2}^{\xi} \to \Sigma^{2m(p-1)}E_0^{\xi}$ and $\theta_1 \colon E_{p-1}^{\xi}/E_0^{\xi} \to \Sigma^{2m}E_{p-2}^{\xi}$.

Define b as

$$\Sigma^{2mp-2} E_0^{\xi} \xrightarrow{\theta_{p-1}^{-1}} \Sigma^{2m-2} E_{p-1}^{\xi} / E_{p-2}^{\xi} \longrightarrow \Sigma^{2m-1} E_{p-2}^{\xi}$$
$$\xrightarrow{\theta_1^{-1}} \Sigma^{-1} E_{p-1}^{\xi} / E_0^{\xi} \longrightarrow E_0^{\xi}$$

Now, we get $\langle E_0^{\xi} \rangle = \langle E_{p-1}^{\xi} \rangle \vee \langle b^{-1} E_0^{\xi} \rangle.$

イロト 不得 トイヨト イヨト 二日

Constructing the Self-map

Lemma

There are (p-local) fiber sequences

$$J_{p^k-1}S^{2n} \to JS^{2n} \to JS^{2np^k},$$

and for m > 1,

$$J_{p^{k}-1}S^{2n} \to J_{mp^{k}-1}S^{2n} \to J_{m-1}S^{2np^{k}}$$

Specialize to B_j and we get a fiber sequence

$$B_{p^k-1} o B_{p^{k+1}-1} \xrightarrow{q} J_{p-1}S^{2p^kn}$$

This gives $E_0^{\xi} = G_k$ and $E_{p-1}^{\xi} = G_{k+1}$, as well as the self-map $b \colon \Sigma^{2np^{k+1}-2}G_k \to G_k.$

Finishing Step II

Consider the following diagram of fiber sequences:

Thomifying, get an action of $\Sigma^{\infty}_{+}\Omega^2 S^{2np^k+1}$ on G_k . Recall Snaith's splitting

$$\Sigma^{\infty}_{+} \Omega^2 S^{2np^k+1} \simeq \bigvee_{i \ge 0} D_i,$$
 $D_i = \left(\Sigma^{(2np^k-1)i} \Sigma^{\infty}_{+} C^{(2)}(i)
ight)_{h\Sigma}$

Rushil Mallarapu

Proof of Nilpotence

August 11, 2022

Finishing Step II

Tracing through this, we get a map

$$f: \Sigma^{2np^{k+1}-2}G_k \to D_p \wedge G_k \to \Sigma^{\infty}_+\Omega^2 S^{2np^k+1} \wedge G_k \to G_k$$

which is multiplication by some element β . In addition, $G_k \to f^{-1}G_k$ factors through $G_k \wedge HF_p$.

This is the same as our map *b*. One computes that $B_{p^{k}-1} \rightarrow B_{p^{k+1}-1}$ is injective in HF_{p} -homology, so $HF_{p_{*}}b = 0$. Thus, the identity map $b^{-1}G_{k} \rightarrow b^{-1}G_{k}$ factors through $b^{-1}G_{k} \wedge HF_{p}$, which is zero, so $b^{-1}G_{k} = 0$ and we're done.

Outline

Statement and Outline

2 Step I: Vanishing Lines

3 Step II: Thom Spectra

4 Vistas and Outlooks

Rushi	l Mal	llarapu
-------	-------	---------

(a)

What Just Happened?

That was complicated. Stepping down from X(n+1) to X(n) is hard, so something is special with $\langle G_k \rangle = \langle G_{k+1} \rangle$.

Need to use the map b to figure out this speciality. No alternative to step II of this proof exists.

This gives a recipe for how MU "sees" the stable homotopy category, and most of Ravenel conjectures hinge on the Nilpotence theorem

イロト イヨト イヨト イヨト

Axiomatic Nilpotence

In full generality, this proof tells us what spectra "detect nilpotence."

Theorem

Let $R \to T$ be a map of ring spectra with R detecting nilpotence. If T is a filtered colimit of spectra G_k such that

• *T*-ANSS for $G_k \wedge R$ has vanishing lines of arbitrarily small slopes,

•
$$\langle G_k \rangle = \langle R \rangle$$
 for all k,

then T detects nilpotence.

The sequel paper tries to characterize these spectra via Morava K-theory.

< □ > < 同 > < 回 > < 回 > < 回 >

References

Hopkins M. J. Smith J. H. Devinatz, E. S., *Nilpotence and stable homotopy theory i*, Annals of Mathematics **128** (1988), no. 2.

S. Devalapurkar, Chromatic homotopy theory, https://sanathdevalapurkar.github.io/files/iap-2018.pdf, 2018.

D. Popović, *Nilpotence theorem in stable homotopy theory*, https://arxiv.org/abs/2108.09867, 2021.

D. Ravenel, *Localization with respect to certain periodic homology theories*, American Journal of Mathematics **106** (1984), no. 2.

_____, *Nilpotence and periodicity in stable homotopy theory*, Annals of Mathematics Studies **128** (1992).