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Statement and Outline

Statements

Theorem (Nilpotence – Strong Form)

Let R be a ring spectrum, and h : π∗R −→ MU∗R be the Hurewicz map.
Then ker h consists of nilpotent elements.

Theorem (Nilpotence – Smash Product Form)

Let f : F −→ X be a map from a finite spectrum to an arbitrary one. If
1MU ∧ f is null, then f is smash nilpotent; i.e. f ∧k = 0 for large enough k .
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Statement and Outline

Reducing to Weak Nilpotence

Theorem (Nilpotence – Weak Form)

Let R be a connective associative ring spectrum of finite type. Then ker h
consists of nilpotent elements.

This implies the smash product form!

Proof.

Reduce to the case F = S0 by Spanier-Whitehead duality. Since MU is a
ring spectrum, 1MU ∧ f is null iff S0 f−→ X −→ MU ∧ X is. As X is a colimit
of finite spectra, we can reduce to a finite spectrum. Replacing the target
by its free monoid lets us apply weak nilpotence; knowing that 1MU ∧ f is
null, we conclude f is smash nilpotent!
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Statement and Outline

The Key Characters

Define ring spectra X (n) by taking the Thom spectra of
ΩSU(n) −→ ΩSU −→ BU. Then X (1) = S0 and MU = lim←−X (n).

Theorem
For R satisfying weak nilpotence conditions, and α ∈ π∗R , if X (n+ 1)∗α is
zero, then X (n)∗α is nilpotent.

Proof.
If h(α) = 0, then because MU = lim←−X (n), X (n + 1)∗α = 0 for sufficiently
large n. By the above, we conclude that X (1)∗α = α = 0.
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Statement and Outline

Plan of Attack

As it turns out, ⟨X (n)⟩ > ⟨X (n + 1)⟩, so we’ll need to interpolate further
via spectra Gk .

Step I: Show that if h(n + 1)∗(α) = 0, then Gk ∧ α−1R = 0 for large
enough k .
Steps II: Show that ⟨Gk⟩ = ⟨X (n)⟩ for all k .
Observe that for E a ring, E ∧ α−1R = 0 implies E -Hurewicz image of
α is nilpotent. (This is easy.)

Steps I and II are very technical!
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Step I: Vanishing Lines

Properties of X (n)

Definition
The James construction JX on a based complex X is the free unital
monoid on X . It admits a filtration JkX = im(X×k → JX ), and
JX = lim−→ JkX . In fact, JX ≃ ΩΣX .

In particular, we can interpolate X (n + 1) to X (n) via the James filtration
associated to the fiber sequence

ΩSU(n)→ ΩSU(n + 1)→ ΩS2n+1.
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Step I: Vanishing Lines

Properties of X (n)

Define Bk via the pullback

Bk JkS
2n

ΩSU(n + 1) ΩS2n+1

Let Fk be Thom spectra of the lower composite, and set Gk := Fpk−1.

AHSS computations will show that X (n + 1)∗X (n + 1) and X (n + 1)∗Gk

are flat over X (n + 1)∗.
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Step I: Vanishing Lines

Vanishing Lines in ANSS

Want Gk ∧ α−1R = 0. Let’s force things in X (n + 1)-ANSS to vanish!

Theorem
Let M be a connective X (n + 1)∗X (n + 1)-comodule of finite type. Then

E s,t = Exts,tX (n+1)∗X (n+1)

(
X (n + 1)∗,X (n + 1)∗Gk ⊗X (n+1)∗ M

)
,

has a vanishing line of slope going to zero as k increases. Specifically, for
any small slope 1/m, there exists k and c such that E s,t = 0 whenever
t − s < ms − c .
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Step I: Vanishing Lines

Proof of Step I

Finally: π∗R acts on π∗Gk ∧ R . We want to show that for every
β ∈ π∗Gk ∧ R , there exists an m such that βαm = 0.

Consider the two X (n + 1)-ANSS E2’s

E s,t
2 = Exts,tX (n+1)∗X (n+1) (X (n + 1)∗,X (n + 1)∗R) =⇒ π∗R,

E s,t
2 = Exts,tX (n+1)∗X (n+1) (X (n + 1)∗,X (n + 1)∗Gk ∧ R) =⇒ π∗Gk ∧ R.

Because X (n + 1)∗α = 0, it is detected by some a ∈ Exts,t(R), for s > 0.
Choose k so that the Ext for M = X (n+ 1)∗R has a vanishing line of slope
less than s/(t − s).
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Step I: Vanishing Lines

Proof of Step I

By flatness,

X (n + 1)∗Gk ∧ R = X (n + 1)∗Gk ⊗X (n+1)∗ X (n + 1)∗R,

so the E2 of the ANSS for π∗Gk ∧ R has such a vanishing line!

Let β ∈ π∗Gk ∧ R be detected by some b ∈ Eu,v
2 . Then, if βαm = 0, it

must be detected by an element in Eu+ms+j ,v+mt+j
2 for j ≥ 0. By our

vanishing line, this will be zero for m large. Thus, βαm = 0, and we are
done!
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Step II: Thom Spectra

The Strategy

We’ll start by constructing a self-map b of Gk such that its cofiber is Gk+1.

Theorem

Given X and self-map g : ΣdX −→ X , then ⟨X ⟩ =
〈
colimΣ−idX

〉
∨ ⟨C (g)⟩.

Thus, we’ll end up with ⟨Gk⟩ = ⟨Gk+1⟩ ∨
〈
b−1Gk

〉
. Then, we show

b−1Gk = 0 and we’re done!
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Step II: Thom Spectra

Constructing the Self-map

We are given ξ : Ep=1 → BU, and suppose we have a fibration
Ep−1 → Jp−1S

2m. For 0 ≤ q ≤ p − 1, let Eq be the pullback

Eq Ep−1

JqS
2m Jp−1S

2m

Iterating, we get a filtration E0 ⊂ E1 ⊂ . . . ⊂ Ep−1. This gives a filtration
of E ξ

p−1 by the E ξ
q .
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Step II: Thom Spectra

Constructing the Self-map

From here, one can define equivalences θp−1 : E
ξ
p−1/E

ξ
p−2 → Σ2m(p−1)E ξ

0

and θ1 : E
ξ
p−1/E

ξ
0 → Σ2mE ξ

p−2.

Define b as

Σ2mp−2E ξ
0 Σ2m−2E ξ

p−1/E
ξ
p−2 Σ2m−1E ξ

p−2

Σ−1E ξ
p−1/E

ξ
0 E ξ

0
θ−1
1

θ−1
p−1

Now, we get ⟨E ξ
0 ⟩ = ⟨E

ξ
p−1⟩ ∨ ⟨b−1E ξ

0 ⟩.
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Step II: Thom Spectra

Constructing the Self-map

Lemma
There are (p-local) fiber sequences

Jpk−1S
2n → JS2n → JS2npk ,

and for m > 1,

Jpk−1S
2n → Jmpk−1S

2n → Jm−1S
2npk .

Specialize to Bj and we get a fiber sequence

Bpk−1 → Bpk+1−1
q−→ Jp−1S

2pkn

This gives E ξ
0 = Gk and E ξ

p−1 = Gk+1, as well as the self-map

b : Σ2npk+1−2Gk → Gk .
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Step II: Thom Spectra

Finishing Step II

Consider the following diagram of fiber sequences:

Ω2S2npk+1 Bpk−1 ΩSU(n + 1)

Ω2S2npk+1 Jpk−1S
2n ΩS2n+1

Thomifying, get an action of Σ∞
+ Ω2S2npk+1 on Gk . Recall Snaith’s splitting

Σ∞
+ Ω2S2npk+1 ≃

∨
i≥0

Di ,

Di =
(
Σ(2npk−1)iΣ∞

+ C (2)(i)
)
hΣi

.
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Step II: Thom Spectra

Finishing Step II

Tracing through this, we get a map

f : Σ2npk+1−2Gk → Dp ∧ Gk → Σ∞
+ Ω2S2npk+1 ∧ Gk → Gk

which is multiplication by some element β. In addition, Gk → f −1Gk

factors through Gk ∧ HFp.

This is the same as our map b. One computes that Bpk−1 → Bpk+1−1 is
injective in HFp-homology, so HFp∗b = 0. Thus, the identity map
b−1Gk → b−1Gk factors through b−1Gk ∧ HFp, which is zero, so
b−1Gk = 0 and we’re done.
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Vistas and Outlooks

What Just Happened?

That was complicated. Stepping down from X (n + 1) to X (n) is hard, so
something is special with ⟨Gk⟩ = ⟨Gk+1⟩.

Need to use the map b to figure out this speciality. No alternative to step
II of this proof exists.

This gives a recipe for how MU “sees” the stable homotopy category, and
most of Ravenel conjectures hinge on the Nilpotence theorem
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Vistas and Outlooks

Axiomatic Nilpotence

In full generality, this proof tells us what spectra “detect nilpotence.”

Theorem
Let R → T be a map of ring spectra with R detecting nilpotence. If T is a
filtered colimit of spectra Gk such that

T -ANSS for Gk ∧ R has vanishing lines of arbitrarily small slopes,
⟨Gk⟩ = ⟨R⟩ for all k ,

then T detects nilpotence.

The sequel paper tries to characterize these spectra via Morava K -theory.
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Vistas and Outlooks
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