Formal Group Laws

Charley Hutchison

July 7, 2022

Charley Hutchison

Formal Group Laws

▶ ◀ ≣ ▶ ≣ ∽ ९ ୯ July 7, 2022 1 / 26

• • • • • • • • • • • •

Outline

Complex Oriented Cohomology Theories

3 Formal Group Laws

4 Chromatic Filtration

イロト イヨト イヨト イヨト

Introduction

In previous weeks we have discussed *p*-localizations of the stable homotopy category. This week, we'll reveal some additional structure on the *p*-local stable homotopy category, and discuss some connection to algebraic geometry.

(日) (周) (三) (三)

Outline

2 Complex Oriented Cohomology Theories

3 Formal Group Laws

Characteristic Classes

Definition

A characteristic class c is a natural assignment, to each complex vector bundle $E \to B$, an element $c(E) \in H^*(B; \mathbb{Z})$.

Theorem

Every characteristic class in a polynomial in the Chern classes $c_k(E) \in H^{2k}(B; \mathbb{Z}).$

A B > A B

Chern Classes

Definition

The **Chern classes** are defined by the following axioms. For the total Chern class $c(E) = 1 + c_1(E) + c_2(E) + \cdots + c_n(E)$:

•
$$c(f^*E) = f^*c(E)$$
 for $f: X \to B$

2
$$c(E \oplus E') = c(E)c(E')$$

c(γ) = 1 + c₁(γ) = 1 + t, where γ → CP[∞] is the tautological line bundle and t ∈ H²(CP[∞]; Z) is a generator.

Theorem

Let L and L' be line bundles. Then
$$c_1(L \otimes L') = c_1(L) + c_1(L')$$
.

(日) (周) (三) (三)

Generalized cohomology

Does this work for a generalized cohomology theory E^* ?

Definition

A complex oriented cohomology theory is a multiplicative cohomology theory E^* with an isomorphism $E^*(\mathbb{CP}^{\infty}) \cong E^*(\text{pt.})[[t]]$ for $t \in E^2(\text{pt.})$ a generator.

In this case, yes! In particular, since $\gamma \to \mathbb{CP}^{\infty}$ is universal, the Chern class $c_1(L)$ of any line bundle $L \to X$ is the pullback of t.

(日) (周) (三) (三)

Generalized cohomology

What is the analogous theorem for tensor products of line bundles?

- We can compute E^{*}(ℂℙ[∞] × ℂℙ[∞]) ≅ E^{*}(pt.)[[u, v]], where u and v are the pullbacks of t along the two projections ℂℙ[∞] × ℂℙ[∞] → ℂℙ[∞].
- Therefore the universal example of a tensor product, π^{*}₁(γ) ⊗ π^{*}₂(γ), has Chern class F ∈ E^{*}(pt.)[[u, v]].
- It follows that, for line bundles L and L' over B, $c_1(L \otimes L') = F(c_1(L), c_1(L')).$

イロト イヨト イヨト

Outline

Complex Oriented Cohomology Theories

4 Chromatic Filtration

<ロ> (日) (日) (日) (日) (日)

Formal Group Laws

Since the tensor product of line bundles is associative, commutative, and has a unit (the trivial bundle), F is a formal group law over $E^*(pt.)$:

Definition

A (commutative, one dimensional) formal group law over a ring R is an element $F \in R[[x, y]]$ satisfying:

F(x, y) = F(y, x)
F(x, 0) = F(0, x) = x
F(x, F(y, z)) = F(F(x, y), z)

Remark

These axioms imply that there is a unique inverse $i(x) \in R[[x]]$ such that F(x, i(x)) = 0.

< ロ > < 同 > < 三 > < 三

Formal Group Laws: Motivation

Remark

A formal group laws can be thought of as the Taylor expansion of the group operation of a Lie group around the origin. In fact, the functor taking a Lie group to its Lie algebra factors through formal group laws.

(日) (同) (三) (三)

Formal Group Laws: Homomorphisms

Definition

A homomorphism of formal group laws $F \to G$ is a power series h such that

$$h(F(x, y)) = G(h(x), h(y)).$$

< ロ > < 同 > < 三 > < 三

Universal Formal Group Law

We can express a formal group law over R as

$$F = \sum_{i,j} a_{ij} x^i y^j,$$

where the $a_{ij} \in R$ satisfy some conditions:

- (Commutativity) $a_{ij} = a_{ji}$
- (Unital) $a_{10} = 1$; $a_{i0} = 0$ for i > 1
- Some complicated associativity relations

Therefore there is a universal formal group law over the ring $L = \mathbb{Z}[a_{ij}]/I$, where I is the ideal generated by these relations. Any formal group law over R is induced by a map $L \to R$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lazard's Theorem

Theorem (Lazard)

The Lazard ring $L = \mathbb{Z}[a_{ij}]/I$ is isomorphic to $\mathbb{Z}[t_1, t_2, ...]$ with t_i in degree 2*i*.

Remark

Recall that the cohomology ring for complex cobordism $MU^*(\text{pt.})$ is $\mathbb{Z}[t_1, t_2, ...]$ with t_i in degree 2i.

(日) (周) (三) (三)

Quillen's Theorem

So L and $MU^*(\text{pt.})$ are abstractly isomorphism. But MU^* in fact a complex-oriented cohomology theory, so its formal group law is represented by a map $L \rightarrow MU^*(\text{pt.})$.

Theorem (Quillen)

The map $L \rightarrow MU^*(pt.)$ representing the formal group law associated with MU^* is an isomorphism.

n-series

Definition

The *n*-series $[n](t) \in R[[t]]$ of a formal group law *F* over *R* is defined inductively:

- [0](t) = 0
- For n > 0, [n](t) = F([n-1](t), t)
- For n > 0, [-n](t) = i([n](t))

Theorem

Each n-series is an endomorphism on F. The map $n \mapsto [n]$ is a homomorphism $\mathbb{Z} \to End(F)$.

Heights

From now on, we will fix a prime p.

Definition

Let F be a formal group law over a ring R with characteristic p. Let v_n be the coefficient of t^{p^n} in [p](t).

- If $v_i = 0$ for i < n, F has height at least n.
- If F has height at least n and v_n is invertible in R, F has height exactly n.
- If F has height at least n for all n, we say F has height ∞ .

Theorem

Height is invariant under isomorphism.

Heights

Theorem

- The additive formal group law F(x, y) = x + y has height ∞ .
- The multiplicative formal group law F(x, y) = x + y + xy has height 1.
- These two formal group laws are not isomorphic.

Theorem

Let k be an algebraically closed field of characteristic p. Two formal group laws F and F' over k are isomorphic if and only if they have the same height.

- **(1))) (1))))))**

Outline

Complex Oriented Cohomology Theories

3 Formal Group Laws

4 Chromatic Filtration

<ロ> (日) (日) (日) (日) (日)

Landweber Exact Functor Theorem

Suppose $MU^*(\text{pt.}) \rightarrow R$ is a map of rings representing a formal group law F. Is there a generalized cohomology theory E^* with associated formal group law F?

Idea: define the functor $E^*(-) = MU^*(-) \otimes_{MU^*(\text{pt.})} R$ (on finite complexes). This always satisfies all axioms except exactness.

Theorem (Landweber)

If, for each prime p, $(p, v_1, v_2, ...)$ is a regular sequence in R, then E^* is a cohomology theory with associated formal group law F.

イロト 不得下 イヨト イヨト 二日

Morava K-theories

Definition

The Morava K-theories are a sequence of spectra K(n).

•
$$K(0) = H\mathbb{Q}$$

• K(n) has $\pi_*K(n) = \mathbb{F}_p[v_n, v_n^{-1}]$ with v_n in degree $2(p^n - 1)$, and the associated formal group law has height n.

< ロ > < 同 > < 三 > < 三

Morava K-theories

Let X be a spectrum of finite type.

Theorem (Ravenel) If $K(n+1)_*(X) = 0$ then $K(n)_*(X) = 0$.

Definition

If n is the smallest value such that $K(n)_*(X)$ is nonzero, we say X is of type n.

(日) (同) (三) (三)

E(n)-equivalence

Definition

A map is an E(n)-equivalence if it induces isomorphisms on K(m) homology for all $m \le n$.

Definition

The localization of a spectrum X at E(n) equivalences is $L_n X = L_{K(0) \lor \dots \lor K(n)}$.

Theorem

Localization at E(n) is smashing: $L_n X \cong X \wedge L_n S$.

(日) (周) (三) (三)

Chromatic Fracture Square

Theorem

```
There is a pullback square
```

$$L_n X \longrightarrow L_{K(n)} X$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{n-1} X \longrightarrow L_{n-1} L_{K(n)} X$$

Slogan

 $L_n SHC$ is heights $\leq n$ in the chromatic filtration. $L_{K(n)}SHC$ is height *n*. $L_{n-1}L_{K(n)}SHC$ is the gluing data used to construct L_nSHC from $L_{n-1}SHC$ and $L_{K(n)}SHC$.

The End!

Thanks for listening! Questions?

<ロ> (日) (日) (日) (日) (日)