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Steenrod Algebra

Cohomology operations

Definition: A stable cohomology operation is a natural transformation of
functors Top∗ → GrAb:

θ : H̃∗(−,Fp)→ H̃∗(−,Fp),

where H̃∗ is reduced singular cohomology.

By Brown representability and Yoneda’s lemma, a cohomology operation

H̃∗(−,Fp) ∼= [−,HFp]−∗ → [−,HFp]−∗,

corresponds to an element of [HFp,HFp]−∗.

Definition: The mod-p Steenrod Algebra

A∗ := [HFp,HFp]−∗

is the Fp-algebra of cohomology operations

H̃∗(−,Fp)→ H̃∗(−,Fp).

3 / 25



Steenrod Algebra

The algebra structure

The Steenrod Algebra A∗ = [HFp,HFp]−∗ is a graded Fp-algebra by
addition and composition.

For any spectrum Z , the cohomology H̃∗(Z ;Fp) := [Z ,HFp]−∗ is a
A∗-module, via the composition map

[Z ,HFp]−∗ ⊗ [HFp,HFp]−∗ → [Z ,HFp]−∗.

Henceforth, assume p = 2. In fact, A∗ can be given the structure of a
Hopf algebra!
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Steenrod Algebra

Steenrod Squares

Theorem:The Steenrod algebra A∗ is generated by cohomology operations
(which are group homomorphisms)

Sqn : H̃m(X ,F2)→ H̃m+n(X ,F2)

such that:
1 Sq0 is the identity
2 For x ∈ H̃n(X ;F2), Sq

n(x) = x2.
3 For x ∈ H̃m(X ;F2) with m < n, Sqn(x) = 0.
4 (Cartan formula) Sqn(xy) =

∑
i+j=n Sq

i (x)Sqj(y)

5 Sq1 is the Bockstein, associated to the SES
0→ Z/2→ Z/4→ Z/2→ 0.

6 (Adem relations) If 0 < a < 2b,

SqaSqb =

[a/2]∑
i=0

(
b − 1− i

a− 2i

)
Sqa+b−iSqi .
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Steenrod Algebra

Equivalent forms of the Cartan formula

The total square Sq = Sq0 + Sq1 + · · · : H∗(X )→ H∗(X ) is a ring
homomorphism.

For x ∈ H̃∗(X ;F2) and y ∈ H̃∗(Y ;F2), the Künneth isomorphism
gives

x ⊗ y ∈ H̃∗(X ;F2)⊗ H̃∗(Y ;F2) ∼= H̃∗(X × Y ;F2),

then
Sqn(x ⊗ y) =

∑
i+j=n

Sqi (x)⊗ Sqj(y).
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Steenrod Algebra

Example Calculation: RP∞

Proposition:
H̃∗(RP∞;F2) = F2[u], with |u| = 1,

with the Steenrod algebra action given by:

Sqj(u2
k
) =


u2

k
j = 0

u2
k+1

j = 2k

0 other.

Proof: Can run induction on v2(j), the 2-adic valuation. When v2(j) = 0

(i.e., j is odd), we have

Sqj(u2
k
) =

∑
a+b=j

Sqa(u2
k−1

)Sqb(u2
k−1

) = 0.

7 / 25



Steenrod Algebra

Generators of A∗

Definition: Let Ã∗ be the ideal of all the positive degree elements in A∗.
An element of A∗ is decomposable if it is in the image of Ã∗ ⊗ Ã∗ under
the multiplication map. Otherwise, an element is indecomposable.

Lemma: The element Sqi is indecomposable iff i is a power of 2.

Proof: For i = 2k if Sqi is decomposable, then there are mj ∈ A∗ with

Sqi =
2k−1∑
j=1

mj · Sqj ,

then in H̃∗(RP∞,F2),

u2i = Sqi (ui ) =
∑

mjSq
j(ui ) = 0,

a contradiction. The other direction is by Adem relations.
Corollary: Sq2

k
generates A∗ as an algebra.
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Steenrod Algebra

What is a Hopf algebra?

Definition: A Hopf algebra H over Fp has:

a multiplication ∇ : H ⊗ H → H;

a comultiplication ∆: H → H ⊗ H;

a unit η : Fp → H;

a counit ϵ : H → Fp; and

an antipode S : H → H,

making the appropriate diagrams commute.

Example: For a group G , the group ring Fp[G ] is a Hopf algebra by:

∇ : Fp[G ]⊗ Fp[G ]→ Fp[G ] : g ⊗ h 7→ gh;

∆: Fp[G ]→ Fp[G ]⊗ Fp[G ] : g 7→ g ⊗ g ;

η : Fp → Fp[G ] : 1 7→ eG ;

ϵ : Fp[G ]→ Fp : g 7→ 1; and

S : Fp[G ]→ Fp[G ] : g 7→ g−1.
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Steenrod Algebra

Hopf Algebra structure on A∗ (cont.)
Theorem: A∗ is a Hopf algebra over F2 with comultiplication given by

∆(Sqk) =
∑

i+j=k

Sqi ⊗ Sqj

and antipode defined by

S(Sq0) = Sq0,
∑
i+j=n

Sqi ∪ S(Sqn−i ) = 0 for n ≥ 1.

This is well-defined since Sq0 ∈ A∗ is the unit. It forces the commutativity
of:
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Steenrod Algebra

Dual of the Steenrod algebra

Definition: The dual of the Steenrod algebra A∗ is defined by
A∗ := HomFp(A∗,Fp).

Remark: The dual A∗ also is a Hopf algebra. It is important since it has a
simpler structure than A∗:

Proposition For p = 2, we have A∗ = F2[ξ1, ξ2, . . . ], where

ξk = Sq2
k−1 · · · Sq2Sq1.
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Adams Spectral Sequences

The spectral sequence

Notation: Z∧
p = limZ/pn is the p-adic integers, and Z(p) is the

localization at the prime p. All cohomology is with Fp-coefficients.

Theorem For X and Y spectra of finite type with homotopy groups
bounded below, and p a prime, there is a spectral sequence

E s,t
2 = Exts,tA∗(H

∗(Y ),H∗(X )) =⇒ [X ,Y ∧
p ]t−s ,

where Y ∧
p denotes the p-completion of Y .

Example: If X = S, then [S,Y ∧
p ]∗ = π∗Y ⊗ Z∧

p . (In particular, the case
Y = S is important)

Theorem(dual) For X and Y spectra of finite type with homotopy groups
bounded below, and p a prime, there is a spectral sequence

E 2
s,t = Exts,tA∗

(H∗(X ),H∗(Y )) =⇒ [X ,Y ]t−s ⊗ Z(p).
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Adams Spectral Sequences

Some consequences

Remark: These spectral sequences only detect the p-part of the homotopy
groups.

Example: Let X = Y = S and p = 2. Then, the first line of the spectral
sequence can be calculated:

E 1,t
2 = Ext1,tA∗(F2,F2) =

{
F2{hi} if t = 2i

0 if t ̸= 2i .

Proof Idea: Elements of Ext1,tA∗(F2,F2) correspond to SES’s

0→ F2[t]→ M → F2[0]→ 0,

which completely determines M as a graded F2-vector space. Whether or
not there is a nontrivial A∗-module structure depends on whether there is
a indecomposable element which “intertwines” the two.
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Adams Spectral Sequences

Which hi ’s survive to the E∞ page?

Fact: The only permanent cycles are h0, h1, h2, h3 giving rise to elements
in π0(S)⊗ Z∧

2 , π1(S)⊗ Z∧
2 , π3(S)⊗ Z∧

2 , and π7(S)⊗ Z∧
2 . (This is related

to whether or not Sn is parallelisable.)

Remark: The E2-term E s,t
2 can be calculated manually for small s and t,

using explicit projective A∗-module resolutions of Fp.

Remark: Sometimes the “dual” spectral sequence is easier to calculate,
since A∗ has a much simpler description.
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Construction of the Spectral Sequence

Adams tower

Definition: An Adams tower for a spectrum Y is a diagram in SHC

...

i2
��

Y2
//

i1
��

J2

Y1
//

i0
��

J1

Y
= // Y0

// J0

such that: (continued)
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Construction of the Spectral Sequence

Adams tower (cont.)

Jn is the homotopy cofiber of in

H∗(in) = 0 for all n

H∗(Jn) is a projective A∗-module for all n

For all n and X ,

[X , Jn]∗
∼−→ Hom∗

A∗(H∗(Jn),H
∗(X ))

Fact: For any spectrum Y , there is an Adams tower.
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Construction of the Spectral Sequence

Example (sphere)

Let HFp be the fiber

HFp → S hur−−→ HFp,

where hur ∈ [Σ∞S0,HFp] ∼= H̃0(S0;Fp) = Fp corresponds to the
generator. The following is an Adams tower:

HFp
∧2

//

i1
��

HFp ∧ HFp
∧2

HFp
//

i0
��

HFp ∧ HFp

S // HFp
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Construction of the Spectral Sequence

The Construction

Let (Yn, Jn) be an Adams tower for Y . Then, applying [X ,−]∗ to the
Adams tower gives an exact couple

A∗∗ =
⊕

n∈Z[X ,Yn]∗
i //

⊕
n∈Z[X ,Yn]∗

j
uu

B∗∗ =
⊕

n∈Z[X , Jn]∗

k

jj
,

graded as As,t = [X ,ΣsYs ]t and Bs,t = [X ,ΣsJs ]t . Here:

i is induced from in : Yn+1 → Yn (degree (−1,−1).)
j is induced from Yn → Jn (degree (0, 0).)

k is induced from Jn → ΣYn+1 (degree (1, 0).)

(Remember: Yn+1 → Yn → Jn is a distinguished triangle)
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Construction of the Spectral Sequence

Exact couples

Definition: An exact couple is an exact sequence of abelian groups of the
form

A
i // A

j��

B
k

__ .

Given an exact couple, d := jk : B → B is such that d2 = j(kj)k = 0, so
we can define the homology group H(B) := ker(d)/im(d). The derived
exact couple is:

A′ := i(A)
i ′≈i // A′ := i(A)

j ′≈j◦i−1
ww

B ′ := H(B)

k ′≈k

gg
.
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Construction of the Spectral Sequence

Exact couples to spectral sequences

Let A = A∗∗
0 and B = B∗∗

0 be graded, and suppose the maps have degrees:

A∗∗
0

i0(−1,−1)
// A∗∗

0

j0(0,0)}}

B∗∗
0 ,

k0(1,0)

bb

so the differential j0k0 has degree (1, 0). The derived couple has degrees:

A∗∗
1

i1(−1,−1)
// A∗∗

1

j1(1,1)}}

B∗∗
1 ,

k1(1,0)

bb

so the differential j1k1 has degree (2, 1). Inductively, this gives rise to a
spectral sequence with E ∗∗

n = B∗∗
n and dn = jnkn, which has degree

(n + 1, n).
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Construction of the Spectral Sequence

Construction (cont.)

Now for

A∗∗ =
⊕

s,t [Σ
tX ,ΣsYs ]

i // A∗∗

j
vv

B∗∗ =
⊕

s,t [Σ
tX ,ΣsJs ],

k

jj

we have E st
1 = [ΣtX ,ΣsJs ], with differential induced by ∂ : Jn → ΣJn+1.

Here, I claim the sequence

Y
∂−→ J0

∂−→ ΣJ1
∂−→ · · ·

gives a projective resolution of A∗-modules

H∗(Y )
∂∗
←− H∗(J0)

∂∗
←− H∗+1(J1)

∂∗
←− · · · .
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Construction of the Spectral Sequence

Construction (cont., again)

Indeed, since Yn+1
in−→ Yn → Jn is a cofibration, so gives rise to the LES

H∗(Yn+1)
i∗n =0←−−− H i (Yn)← H∗(Jn)← H∗+1(Yn+1)

i∗n =0←−−− H∗+1(Yn),

i.e.,
0← H∗(Yn)← H∗(Jn)← H∗+1(Yn)← 0.

Combining these exact sequences gives

0← H∗(Y )← H∗(J0)← H∗+1(J1)← · · ·

Taking homA∗(−,H∗(X )) gives the projective resolution

HomA∗(H∗(J0),H
∗(X )) = [X , J0]∗

d−→ [X , J1]∗
d−→ · · · ,

so the homology of E s,t
1 is

E s,t
2 = Exts,tA∗(H

∗(Y ),H∗(X )).
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Construction of the Spectral Sequence
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