Steenrod Algebra and the Adams Spectral Sequence

Kenta Suzuki

Chroma Week 5

July 30, 2022

Table of Contents

2 Adams Spectral Sequences

Cohomology operations

Definition: A stable cohomology operation is a natural transformation of functors $Top_* \rightarrow GrAb$:

$$\theta \colon \widetilde{H}^*(-,\mathbb{F}_p) \to \widetilde{H}^*(-,\mathbb{F}_p),$$

where \widetilde{H}^* is reduced singular cohomology.

By Brown representability and Yoneda's lemma, a cohomology operation $\widetilde{H}^*(-,\mathbb{F}_p)\cong [-,H\mathbb{F}_p]_{-*}\to [-,H\mathbb{F}_p]_{-*},$

corresponds to an element of $[H\mathbb{F}_p, H\mathbb{F}_p]_{-*}$.

Definition: The mod-p Steenrod Algebra

$$\mathcal{A}^* := [H\mathbb{F}_p, H\mathbb{F}_p]_{-*}$$

is the \mathbb{F}_p -algebra of cohomology operations

$$\widetilde{H}^*(-,\mathbb{F}_p)\to \widetilde{H}^*(-,\mathbb{F}_p).$$

The algebra structure

- The Steenrod Algebra $\mathcal{A}^* = [H\mathbb{F}_p, H\mathbb{F}_p]_{-*}$ is a graded \mathbb{F}_p -algebra by addition and composition.
- For any spectrum Z, the cohomology H
 ^{*}^{*}(Z; 𝔽_p) := [Z, H𝔽_p]_{-*} is a A^{*}-module, via the composition map

$$[Z, H\mathbb{F}_{p}]_{-*} \otimes [H\mathbb{F}_{p}, H\mathbb{F}_{p}]_{-*} \to [Z, H\mathbb{F}_{p}]_{-*}.$$

Henceforth, assume p = 2. In fact, \mathcal{A}^* can be given the structure of a Hopf algebra!

Steenrod Squares

Theorem: The Steenrod algebra A^* is generated by cohomology operations (which are group homomorphisms)

$$\mathit{Sq}^n\colon \widetilde{H}^m(X,\mathbb{F}_2) o \widetilde{H}^{m+n}(X,\mathbb{F}_2)$$

such that:

$$Sq^{a}Sq^{b} = \sum_{i=0}^{\lfloor a/2 \rfloor} {b-1-i \choose a-2i} Sq^{a+b-i}Sq^{i}.$$

Equivalent forms of the Cartan formula

- The total square $Sq = Sq^0 + Sq^1 + \cdots : H^*(X) \to H^*(X)$ is a ring homomorphism.
- For $x \in \widetilde{H}^*(X; \mathbb{F}_2)$ and $y \in \widetilde{H}^*(Y; \mathbb{F}_2)$, the Künneth isomorphism gives

$$x\otimes y\in \widetilde{H}^*(X;\mathbb{F}_2)\otimes \widetilde{H}^*(Y;\mathbb{F}_2)\cong \widetilde{H}^*(X imes Y;\mathbb{F}_2),$$

then

$$Sq^n(x\otimes y) = \sum_{i+j=n} Sq^i(x)\otimes Sq^j(y).$$

Example Calculation: $\mathbb{R}P^{\infty}$

Proposition:

$$\widetilde{H}^*(\mathbb{R}P^\infty;\mathbb{F}_2)=\mathbb{F}_2[u], \ \textit{with} \ |u|=1,$$

with the Steenrod algebra action given by:

$$Sq^{j}(u^{2^{k}}) = egin{cases} u^{2^{k}} & j = 0 \ u^{2^{k+1}} & j = 2^{k} \ 0 & other. \end{cases}$$

Proof: Can run induction on $v_2(j)$, the 2-adic valuation. When $v_2(j) = 0$

(i.e., j is odd), we have

$$Sq^{j}(u^{2^{k}}) = \sum_{a+b=j} Sq^{a}(u^{2^{k-1}})Sq^{b}(u^{2^{k-1}}) = 0.$$

Generators of \mathcal{A}^*

Definition: Let $\widetilde{\mathcal{A}^*}$ be the ideal of all the positive degree elements in \mathcal{A}^* . An element of \mathcal{A}^* is *decomposable* if it is in the image of $\widetilde{\mathcal{A}^*} \otimes \widetilde{\mathcal{A}^*}$ under the multiplication map. Otherwise, an element is *indecomposable*.

Lemma: The element Sq^i is indecomposable iff i is a power of 2.

Proof: For $i = 2^k$ if Sq^i is decomposable, then there are $m_i \in \mathcal{A}^*$ with

$$Sq^i = \sum_{j=1}^{2^k-1} m_j \cdot Sq^j,$$

then in $\widetilde{H}^*(\mathbb{R}P^\infty,\mathbb{F}_2)$,

$$u^{2i}=Sq^i(u^i)=\sum m_j Sq^j(u^i)=0,$$

a contradiction. The other direction is by Adem relations. Corollary: Sq^{2^k} generates A^* as an algebra.

What is a Hopf algebra?

Definition: A Hopf algebra H over \mathbb{F}_p has:

- a multiplication $\nabla \colon H \otimes H \to H$;
- a comultiplication $\Delta \colon H \to H \otimes H$;
- a unit $\eta \colon \mathbb{F}_p \to H$;
- a counit $\epsilon \colon H \to \mathbb{F}_p$; and
- an antipode $S: H \rightarrow H$,

making the appropriate diagrams commute.

Example: For a group G, the group ring $\mathbb{F}_{p}[G]$ is a Hopf algebra by:

- $\nabla \colon \mathbb{F}_{p}[G] \otimes \mathbb{F}_{p}[G] \to \mathbb{F}_{p}[G] : g \otimes h \mapsto gh;$
- $\Delta \colon \mathbb{F}_{p}[G] \to \mathbb{F}_{p}[G] \otimes \mathbb{F}_{p}[G] : g \mapsto g \otimes g;$
- $\eta \colon \mathbb{F}_{p} \to \mathbb{F}_{p}[G] : 1 \mapsto e_{G};$
- $\epsilon \colon \mathbb{F}_{p}[G] \to \mathbb{F}_{p} : g \mapsto 1$; and
- $S: \mathbb{F}_{\rho}[G] \to \mathbb{F}_{\rho}[G]: g \mapsto g^{-1}.$

Hopf Algebra structure on \mathcal{A}^* (cont.)

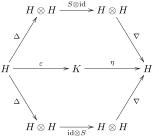
Theorem: \mathcal{A}^* is a Hopf algebra over \mathbb{F}_2 with comultiplication given by

$$\Delta(\mathit{Sq}^k) = \sum_{i+j=k} \mathit{Sq}^i \otimes \mathit{Sq}^j$$

and antipode defined by

$$S(Sq^0)=Sq^0, \sum_{i+j=n}Sq^i\cup S(Sq^{n-i})=0 ext{ for } n\geq 1.$$

This is well-defined since $Sq^0 \in A^*$ is the unit. It forces the commutativity of:



10 / 25

Dual of the Steenrod algebra

Definition: The *dual* of the Steenrod algebra \mathcal{A}^* is defined by $\mathcal{A}_* := \operatorname{Hom}_{\mathbb{F}_p}(\mathcal{A}^*, \mathbb{F}_p).$

Remark: The dual A_* also is a Hopf algebra. It is important since it has a simpler structure than A^* :

Proposition For p = 2, we have $\mathcal{A}_* = \mathbb{F}_2[\xi_1, \xi_2, ...]$, where $\xi_k = Sq^{2^{k-1}} \cdots Sq^2Sq^1$.

Table of Contents

Construction of the Spectral Sequence

The spectral sequence

Notation: $\mathbb{Z}_p^{\wedge} = \lim \mathbb{Z}/p^n$ is the *p*-adic integers, and $\mathbb{Z}_{(p)}$ is the localization at the prime *p*. All cohomology is with \mathbb{F}_p -coefficients.

Theorem For X and Y spectra of finite type with homotopy groups bounded below, and p a prime, there is a spectral sequence

$$E_2^{s,t} = \operatorname{Ext}_{\mathcal{A}^*}^{s,t}(H^*(Y),H^*(X)) \implies [X,Y_p^{\wedge}]_{t-s},$$

where Y_p^{\wedge} denotes the p-completion of Y.

Example: If $X = \mathbb{S}$, then $[\mathbb{S}, Y_p^{\wedge}]_* = \pi_* Y \otimes \mathbb{Z}_p^{\wedge}$. (In particular, the case $Y = \mathbb{S}$ is important)

Theorem(dual) For X and Y spectra of finite type with homotopy groups bounded below, and p a prime, there is a spectral sequence

$$E^2_{s,t} = \operatorname{Ext}_{\mathcal{A}_*}^{s,t}(H_*(X), H_*(Y)) \implies [X, Y]_{t-s} \otimes \mathbb{Z}_{(p)}.$$

Some consequences

Remark: These spectral sequences only detect the *p*-part of the homotopy groups.

Example: Let X = Y = S and p = 2. Then, the first line of the spectral sequence can be calculated:

$$E_2^{1,t} = \operatorname{Ext}_{\mathcal{A}^*}^{1,t}(\mathbb{F}_2,\mathbb{F}_2) = \begin{cases} \mathbb{F}_2\{h_i\} & \text{if } t = 2^i \\ 0 & \text{if } t \neq 2^i. \end{cases}$$

Proof Idea: Elements of $\operatorname{Ext}_{\mathcal{A}^*}^{1,t}(\mathbb{F}_2,\mathbb{F}_2)$ correspond to SES's

$$0 \rightarrow \mathbb{F}_2[t] \rightarrow M \rightarrow \mathbb{F}_2[0] \rightarrow 0,$$

which completely determines M as a graded \mathbb{F}_2 -vector space. Whether or not there is a nontrivial \mathcal{A}^* -module structure depends on whether there is a indecomposable element which "intertwines" the two.

Which h_i 's survive to the E_{∞} page?

Fact: The only permanent cycles are h_0 , h_1 , h_2 , h_3 giving rise to elements in $\pi_0(\mathbb{S}) \otimes \mathbb{Z}_2^{\wedge}$, $\pi_1(\mathbb{S}) \otimes \mathbb{Z}_2^{\wedge}$, $\pi_3(\mathbb{S}) \otimes \mathbb{Z}_2^{\wedge}$, and $\pi_7(\mathbb{S}) \otimes \mathbb{Z}_2^{\wedge}$. (This is related to whether or not S^n is parallelisable.)

Remark: The E_2 -term $E_2^{s,t}$ can be calculated manually for small s and t, using explicit projective \mathcal{A}^* -module resolutions of \mathbb{F}_p .

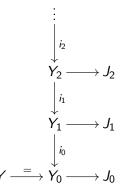
Remark: Sometimes the "dual" spectral sequence is easier to calculate, since A_* has a much simpler description.

Table of Contents

Construction of the Spectral Sequence

Adams tower

Definition: An Adams tower for a spectrum Y is a diagram in SHC



such that: (continued)

Adams tower (cont.)

- J_n is the homotopy cofiber of i_n
- $H^*(i_n) = 0$ for all n
- $H^*(J_n)$ is a projective \mathcal{A}^* -module for all n
- For all *n* and *X*,

$$[X,J_n]_*\xrightarrow{\sim}\operatorname{Hom}_{\mathcal{A}^*}^*(H^*(J_n),H^*(X))$$

Fact: For any spectrum Y, there is an Adams tower.

Example (sphere)

Let $\overline{H\mathbb{F}_p}$ be the fiber

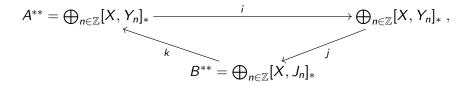
$$\overline{H\mathbb{F}_p} \to \mathbb{S} \xrightarrow{hur} H\mathbb{F}_p,$$

where $hur \in [\Sigma^{\infty}S^0, H\mathbb{F}_p] \cong \widetilde{H}^0(S^0; \mathbb{F}_p) = \mathbb{F}_p$ corresponds to the generator. The following is an Adams tower:

$$\begin{array}{c} \overline{H\mathbb{F}_{p}}^{\wedge 2} \longrightarrow H\mathbb{F}_{p} \wedge \overline{H\mathbb{F}_{p}}^{\wedge 2} \\ \downarrow^{i_{1}} \\ \overline{H\mathbb{F}_{p}} \longrightarrow H\mathbb{F}_{p} \wedge \overline{H\mathbb{F}_{p}} \\ \downarrow^{i_{0}} \\ \mathbb{S} \longrightarrow H\mathbb{F}_{p} \end{array}$$

The Construction

Let (Y_n, J_n) be an Adams tower for Y. Then, applying $[X, -]_*$ to the Adams tower gives an exact couple



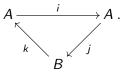
graded as $A^{s,t} = [X, \Sigma^s Y_s]_t$ and $B^{s,t} = [X, \Sigma^s J_s]_t$. Here:

- *i* is induced from $i_n: Y_{n+1} \rightarrow Y_n$ (degree (-1, -1).)
- j is induced from $Y_n \rightarrow J_n$ (degree (0, 0).)
- k is induced from $J_n \rightarrow \Sigma Y_{n+1}$ (degree (1,0).)

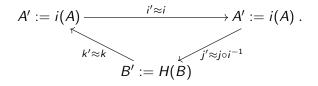
(*Remember:* $Y_{n+1} \rightarrow Y_n \rightarrow J_n$ is a distinguished triangle)

Exact couples

Definition: An *exact couple* is an exact sequence of abelian groups of the form

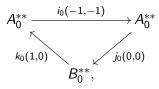


Given an exact couple, $d := jk : B \to B$ is such that $d^2 = j(kj)k = 0$, so we can define the homology group $H(B) := \ker(d)/\operatorname{im}(d)$. The *derived* exact couple is:

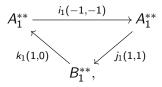


Exact couples to spectral sequences

Let $A = A_0^{**}$ and $B = B_0^{**}$ be graded, and suppose the maps have degrees:



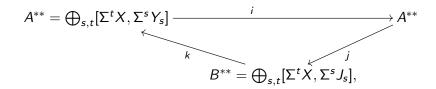
so the differential $j_0 k_0$ has degree (1,0). The derived couple has degrees:



so the differential j_1k_1 has degree (2, 1). Inductively, this gives rise to a spectral sequence with $E_n^{**} = B_n^{**}$ and $d_n = j_n k_n$, which has degree (n + 1, n).

Construction (cont.)

Now for



we have $E_1^{st} = [\Sigma^t X, \Sigma^s J_s]$, with differential induced by $\partial \colon J_n \to \Sigma J_{n+1}$. Here, I claim the sequence

$$Y \xrightarrow{\partial} J_0 \xrightarrow{\partial} \Sigma J_1 \xrightarrow{\partial} \cdots$$

gives a projective resolution of \mathcal{A}^* -modules

$$H^*(Y) \stackrel{\partial^*}{\leftarrow} H^*(J_0) \stackrel{\partial^*}{\leftarrow} H^{*+1}(J_1) \stackrel{\partial^*}{\leftarrow} \cdots$$

Construction (cont., again)

Indeed, since $Y_{n+1} \xrightarrow{i_n} Y_n \to J_n$ is a cofibration, so gives rise to the LES

$$H^*(Y_{n+1}) \xleftarrow{i_n^*=0} H^i(Y_n) \leftarrow H^*(J_n) \leftarrow H^{*+1}(Y_{n+1}) \xleftarrow{i_n^*=0} H^{*+1}(Y_n),$$

i.e.,

$$0 \leftarrow H^*(Y_n) \leftarrow H^*(J_n) \leftarrow H^{*+1}(Y_n) \leftarrow 0.$$

Combining these exact sequences gives

$$0 \leftarrow H^*(Y) \leftarrow H^*(J_0) \leftarrow H^{*+1}(J_1) \leftarrow \cdots$$

Taking hom_{A^*} $(-, H^*(X))$ gives the projective resolution

$$\operatorname{Hom}_{\mathcal{A}^*}(H^*(J_0), H^*(X)) = [X, J_0]_* \xrightarrow{d} [X, J_1]_* \xrightarrow{d} \cdots,$$

so the homology of $E_1^{s,t}$ is

$$E_2^{s,t} = \operatorname{Ext}_{\mathcal{A}^*}^{s,t}(H^*(Y), H^*(X)).$$

- Bott-Tu, *Differential Forms in Algebraic Topology* (spectral sequences)
- Barnes-Roitzheim, Foundations of Stable Homotopy Theory