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Important Definitions

▶ Suspension: given X a space, we define ΣX as

X × I/X × {0},X × {1}

This gives us an endofunctor on Top.
▶ Reduced suspension: for a base point x0 ∈ X , we make the

further identification (x0, t1) ∼ (x0, t2) for all t1, t2. For nice
enough spaces (eg CW complexes), reduced suspension and
ordinary suspension are homotopy equivalent, so we often use
the notation Σ interchangeably.

▶ Loop space: given a (pointed) X , ΩX is the space of
(pointed) maps S1 → X .

▶ If Σi f is nullhomotopic for some i , f is stably nullhomotopic;
otherwise it’s stably essential.
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Important Definitions Continued
▶ Smash product: for spaces X ,Y with base points x0, y0, we

define X ∧ Y to be

X × Y /(x0, y) ∼ (x , y0)

for all x , y . Reduced suspension is a special case of the smash
product: ΣX ≃ X ∧ S1.

▶ The smash product makes the category of pointed spaces into
a symmetric monoidal category. For example, check that the
unit object is S0.

▶ A homology theory E∗ is a homotopy invariant functor from
Top to the category of graded abelian groups (satisfying
Eilenberg-Steenrod). The natural map

ϵ : E∗(X ) → E∗(pt)

is called the augmentation map and its kernel is the reduced
homology of X .
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Some Motivation

Remark: for many homotopy invariant functors - such as homology
- nullhomotopic maps are sent to trivial maps. But, the converse is
rarely true.

Problem: find such a (hopefully easily computable) functor such
that F (f ) is trivial iff f is nullhomotopic.

This problem is probably impossible. But, restricting to nicer spaces
makes it possible to give special cases in which the converse is true.
The Nilpotence Theorem is such a result.

Problem: find a reduced homology theory (preferably one easy to
compute) such that E∗(f ) is trivial iff f is stably nullhomotopic.

The generating hypothesis (Freyd) says that stable homotopy is
such a homology theory.
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Freudenthal Suspension Theorem

Theorem: Let X be an n-connected CW complex. Then

πi (X ) ≃ πi+1(ΣX )

for i ≤ 2n. In particular, for n > i + 1, we have

πi+n(S
n) ≃ πi+n+1(ΣS

n) ≃ πi+n+1(S
n+1)

ie if you if you continue to take suspensions of Sn, eventually the
ith homotopy group ’stabilizes’ and stays the same. The stable
homotopy groups of spheres motivate the stable homotopy category.

We can see that πS
∗ is really a graded ring; if α ∈ πS

m and β ∈ πS
n

are represented by maps f , g into Sn, then αβ is represented by

f ◦ Σmg : Sn+m+k → Sn+k → Sk
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Nilpotence Theorem I

Definition: a map ΣdX → X for some d is a self-map of X . f is
nilpotent if one of its suspensions is nullhomotopic; otherwise it is
periodic.

Nilpotence Theorem (Statement 1): there exists a homology
theory MU∗ such that a self map f of a finite CW complex is stably
nilpotent iff some iterate of MU∗(f ) is trivial.

(We will see two stronger forms of the theorem soon).
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Brown’s Representability Theorem

Gives conditions for a contravariant functor F from the homotopy
category of pointed CW complexes to Sets to be representable.
These conditions are:

1. F (∨αXα) ≃
∏

α F (Xα)

2. F sends homotopy pushouts to weak pullbacks (Mayer-Vietoris
Axiom)

Then, F is isomorphic to Hom(−,X ) for some X in a natural way.

For example, taking F to be H i (X ;A) for an abelian A, we see that
the conditions are fulfilled, so there is a representing space X .
This space is K (A, i) (gives a way of proving the existence of
Eilenberg-Maclane spaces).
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Spectra and the Stable
Homotopy Category
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Intuitive Idea/Motivation?

We know that Ω and Σ are adjoints of each other. That is, there is
a natural bijection

[ΣX ,Y ] ≃ [X ,ΩY ]

(Eckmann-Hilton duality). Furthermore, we know that there is a
natural group structure on the two sets above.

However, Σ and Ω are not equivalences of categories. For example,
consider the Hopf Fibration S3 → S2.

Thus (as I understand it so far) the stable homotopy category is a
way of working in a category in which there are analogues to Σ and
Ω such that every object is actually isomorphic to a suspension or
loop object.
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Axiomatic Definition
Instead of going through the details of constructing this category
ground-up, we save time by describing the properties of the stable
homotopy category and then just asserting that such a category
exists. We claim that our category satisfies the following:
▶ There is a functor Σ∞ : HoTop → HoSpectra.
▶ There is a suspension functor Σ agreeing with the usual

suspension functor, ie the following diagram commutes:

HoTop HoTop

HoSpectra HoSpectra

Σ∞ Σ∞

Σ

Σ

▶ There is similarly a functor Ω∞, right adjoint to Σ∞, and a
corresponding loop functor Ω : HoSpectra → HoSpectra.

▶ Both Σ and Ω are equivalences of categories from HoSpectra
to itself, and also form an equivalence of categories together.

12 / 21



Axiomatic Definition Continued

▶ There is a natural way to turn [X ,Y ] into an abelian group. Σ
and Ω, as usual, form an adjunction too.

▶ Our category has wedge sums X ∨ Y and products X × Y .
Additionally, it has a zero object, coming from ∗ in Top. The
natural maps

X ∨ ∗ → X ,X → X × ∗,X ∨ Y → X × Y

are all isomorphisms (the third map is not usually an
isomorphism for normal topological spaces!)

▶ If X is a retract of A, it contains A as a summand.
▶ We can view [X ,Y ] as a graded abelian ring by taking its ith

piece to be [ΣiX ,Y ].
(ie, we also know that our category is an additive category, though
it is not abelian).
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Properties of the Stable Homotopy Category

▶ Define the sphere spectrum to be S = Σ∞S0. We can define
the stable homotopy groups of an object X in this category to
be

πn(X ) = [ΣnS, S ]

When X is a sphere, these groups are naturally isomorphic to
the usual stable homotopy groups as discussed before.

▶ Note that n can actually be any integer, since Σ has a genuine
inverse equivalence Ω now.

▶ In general, objects with trivial negative stable homotopy
groups are called connected spectra. All objects coming from
spaces are connected spectra.

▶ Whitehead’s Theorem: if f : X → Y induces an isomorphism
on the stable homotopy groups, then f itself is an isomorphism
(stable homotopy detects isomorphisms).
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Further Properties

▶ We can define a smash product X ∧ Y , turning HoSpectra
into a symmetric monoidal category as with spaces (this is
analogous to the tensor product of abelian groups). The unit
object is S.

▶ Σ∞ respects the smash product (ie it is monoidal).
▶ The objects of HoSpec define (co)homology theories on CW.

It turns out, by Brown representability, that every cohomology
theory on finite CW complexes is represented by an object in
HoSpectra, unique up to canonical isomorphism.
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Distinguished Triangles
We have classical cofiber and fiber sequences:

A → X → X/A → ΣA

and
ΩB → F → E → B

We generalize these sequences to distinguished triangles in
HoSpectra: these are defined as tuples (X ,Y ,Z , f , g , h) fitting into
a diagram

X → Y → Z → ΣX

We get a long exact sequence of homotopy groups from
distinguished triangles, and Σ∞,Ω∞ both send cofiber sequences to
distinguished triangles and vice versa.

Many of the other properties of classical (co)fiber sequences also
apply; for example, all maps have (homotopy) cofibers. Also note
that cofiber and fiber sequences coincide - another reason why this
category is ’stable.’ 16 / 21



Ok, but what IS this category?
There are several different definitions of spectra. I find sequential
definitions easiest to think about. Adams (1974) defined a
spectrum as a sequence {En} of CW complexes together with
inclusions ΣEn → En+1 which are cellular maps.

Examples:
1. An Eilenberg-Maclane spectrum has nth space K (A, n) for a

given abelian group A.
2. The sphere spectrum has nth space Sn, and the maps are the

canonical homeomorphisms ΣSn → Sn+1. (It is a ring
spectrum).

3. The suspension spectrum of a space X in general is given
recursively, by Xn = Sn ∧ X . We denote this spectrum by
Σ∞X .

Homotopy groups: for a spectrum E , we define πn(E ) to be the
limit over k of πn+k(Ek) (where the maps
πn+k(Ek) → πn+k+1(Ek+1) are the maps given by the composition
Ek → ΣEk → Ek+1).
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More on the Nilpotence
Theorem
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Different Forms of the Nilpotence Theorem

Take for granted (for now): MU is a spectrum representing a
certain cohomology theory, MU∗. It has the following very nice
properties.

1. Self-map form: if X is a finite spectrum and α : ΣdX → X is
a self-map, then MU∗(α) = 0 implies that α is nilpotent.

2. Smash product form: if X is a finite spectrum, f : X → Y is a
map of spectra, then if idMU ∧f is nullhomotopic, f is smash
nilpotent. (ie f ∧k : X∧k → Y ∧k).

3. Ring spectrum form: let R be a ring spectrum and
h : π∗(R) → MU∗(R) be the Hurewicz homomorphism. Every
element of the kernel of h is nilpotent. (Weak ring spectrum
form is just this statement, but for connected finite spectra).
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Applications

Nishida’s Theorem: every element of positive degree in πS
∗ is

nilpotent.

Proof: Serre finiteness tells us that all πS
d are finite abelian, so all

elements are torsion. On the other hand, a result of Novikov tells
us that π∗(MU) ≃ Z[x1, x2...] with |xi | = 2i is torsion free. Thus
all elements of πS

d are in the kernel of πS
d → π∗(MU). By the ring

spectrum form, we are done.
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Thank you!/Questions?
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