
DGAIntel Domain Verification MARCH 2020

DGAIntel: Targeted Identification of Domain Generation
Algorithms with Convolutional-Recurrent Networks

Rushil Mallarapu1♱

1Fairfield Ludlowe High School, 785 Unquowa Av., Fairfield, CT
♱Email Address: rushil.mallarapu@gmail.com

Modern malware makes use of domain generation algorithms (DGAs) to establish communications with a
command and control (C&C) center, enabling it to execute malicious activities. DGAs generate thousands
of domain names of which only a small percentage have been registered, to communicate with the
botmaster, presenting an asymmetric challenge to defenders due to the scope of the detection problem.
Despite the success of novel deep learning architectures to recognize maliciously generated domains, few
implementations of such algorithms exist, hampering the adoption of the technology in security
applications. Our research asked whether state-of-the-art DGA detection models could be improved upon
for application to threat intelligence pipelines. We report the development of DGAIntel, a deep learning
model that can identify whether a domain name is genuine or maliciously generated without auxiliary
information. The model uses a convolution-recurrent architecture to quickly extract short and long distance
information in domain names. Experiments show better or comparable performance to state-of-the-art DGA
detection models. We develop a lightweight package that allows professionals to utilize the model for
security applications. This work is a major implementation of deep learning architectures applied to DGA
detection, and enables the integrated usage of DGA intelligence in system defense.

Keywords: Domain Generation, Deep Learning, Text Analysis, Cybersecurity

I. INTRODUCTION
Malicious software, or malware, is used for a variety of

unauthorized actions, from information theft to targeted
denial of computational resources. Malware is estimated to
cost the national economy between $57 billion and $109
billion, making it imperative to develop novel technologies
to mitigate its ability to achieve its goals [1]. For it to do so,
malware needs to communicate with a command and
control (C&C) center, to relay instructions, collect
information, and receive updates. Botmasters – C&C
controllers – used to hardcode IPs to allow communicating
with their malware, leading to the connections being shut
down upon discovery of the malware. To address this,
malware engineers designed domain generation algorithms
(DGAs) to allow C&C communication with malware could
persist even after detection.

Embedded into many forms of malware, domain
generation algorithms work by randomly producing
thousands of domain names and attempting to resolve all
of them against its DNS server [2]-[3]. The botmaster only
needs to have registered a few of these domain names.
When the malware-embedded DGA generates a domain
that the botmaster has registered, it is able to establish a
valid IP address and communicate with the C&C center. As
such, detecting DGA domains presents an asymmetric
challenge to defenders: with standard blacklisting,
defenders would need to keep registering generatable
domains, while attackers would only need one successful
connection to communicate or execute malware [4]. DGA-
based malware includes Conficker, Stuxnet (the malware

that attacked Iranian nuclear facilities), and Flame [5]. As
such, cybersecurity methodologies require an intelligent
way of detecting and responding to the use of DGAs by
malware in order to assure network security.

The binary classification problem this research addresses
– detect whether a domain is maliciously generated or a
genuine address – is well-researched in information
security [5]. Knowledge of whether a domain name itself is
genuine or malicious is especially useful, as gathering
contextual information can present an additional overhead
or may be unavailable within certain situations. Some
algorithms use WHOIS and NXDomain records to gather
rough predictions on whether a domain name is DGA.
More recently, Curtin et al. proposed an RNN architecture
for detecting DGA domains based on domain name and
WHOIS data, but they acknowledged that their model was
limited by disputes regarding the ability for open access to
domain metadata [6].

Standard techniques for DGA detection with machine
learning over domain names involve classification based on
engineered text features, but this makes the model both
vulnerable to adversarial training and impeded in detecting
classifiable boundaries when observed DGA features
overlap with those of genuine domains [5]. The use of deep
learning methodologies enables DGA detection algorithms
to avoid the dependence on feature engineering, as such
models learn implicit features. As such, active research on
DGA detection focuses on developing various deep
learning architectures suited to the task, see e.g. [5]-[7]. We
report the development of DGAIntel, which implements a
convolutional-recurrent architecture for binary DGA

Page of 1 5

DGAIntel Domain Verification MARCH 2020

classification in a lightweight package easily deployable for
usage by cybersecurity architects.

II. METHODS

1. Data

We combined data from three varied sources; the top
million domain names on Alexa, the Bambenek DGA feed,
and the Splunk DGA detection dataset. Alexa records the
top one million domain names with respect to the number
of page views by unique visitors [8]. We implicitly assume
the domains in the Alexa dataset are genuine domains.

The Bambenek Consulting DGA domain feed provided
700,000 known DGA domains. This feed collects DGA
domains from known DGA families in live network traffic
by comparing domain names generated from known DGA
algorithms to those encountered in network traffic [9]. It is
important to note that DGAIntel is designed to perform
binary detection of DGA domains, agnostic of DGA family,
which allows the model to be effective against previously
unknown malware.

The Splunk DGA dataset contains 100,000 mixed
examples of DGA and genuine domains [10]. The dataset
was originally curated to demonstrate the difficulty in
classifying DGA domains via standard string informatics
metrics (n-grams, entropy, etc.).

The dataset was randomly split into training (1,500,000
examples), validation (100,000 examples), and test (10,000
examples) sets. Furthermore, to prevent the model from
developing an over-reliance on the TLD as a classification
benchmark, 25% of the domain names were stripped of
their TLD and subdomain, allowing the model to better
recognize malicious characteristics in the base domain
name.

2. Architecture

At a high level, DGAIntel uses a stacked convolutional-
recurrent architecture inspired by state-of-the-art models for
text mining [11], [12]. This allows the model to learn
classifiable differences over both short-distance and long-
distance patterns in domain names. The model architecture
is derived from one presented in Yu et al., with
modifications made to improve generalizability and
performance [5]. The string passed as input to the model
consists of the full domain name. This name is then
converted into an integer sequence via a static
capitalization-agnostic embedding and padded to a
maximum character length of 81. It is then passed through a
learnable vector embedding that converts each character
into a 128-dimensional vector encoding its information.
This results in the domain name being converted as an 81
by 128 matrix, where each column represents one character.

The embedded domain name is first passed through a
convolutional neural network (CNN). CNNs are well
known for their ability to recognize local informational
correlations, especially in the domain of 2D image
processing. They have also been used in their 1D variant to

FIG. 1. Diagram of DGAIntel network architecture. The domain
name is first embedded into a high-dimensional vector encoding.
It is then passed through sequential convolutional and LSTM
layers to further encode its lexical information. Finally, a dense
layer uses the embedded domain vector to predict whether the
domain name is legitimate or malicious.

to perform “temporal” classification of character sequences.
In this instance, we use a single CNN layer to further
embed the character-level domain name in a context aware
manner.

The vector is then passed through a long short-term
memory layer (LSTM), a specialized type of recursive
neural network (RNN). LSTMs are known for their state of
the art performance on sequence-related learning.
Therefore, they are a natural choice for classifying patterns
in text sequences, such as domain names. We use a single
LSTM layer, which embeds the entire domain name into a
64 by 1 vector.

The network finally performs binary classification on this
CNN-LSTM embedded domain vector to predict whether
the input domain name is or is not DGA. The full network
architecture is shown in Figure 1. We use a shallow
network architecture to enable both fast predictions and to
prevent over utilization of computational resources. The
results below show we are able to maintain state-of-the-art
performance despite this shallow architecture.

3. Implementation

The network architecture described above was
implemented in Python. We utilized Google’s Tensorflow
framework with the Keras API to build and train the
network architecture [13]. As a main goal of this research is
to enable widespread utilization of deep learning in
malware detection, we make all our code available in the
DGAIntel package for Python, which can be accessed on
GitHub and PyPI. See appendix for access.

The model was implemented with the intention of being
lightweight, intuitive, and uncomplicated. As such, it only
supplies three objects. The “get_prob” function returns the
predicted likelihood of the input domain names being
DGA, where a prediction score of one indicates that the
domain name is DGA. The “get_prediction” implicitly uses
that function to return full strings describing whether
domain names in a list or text file are DGA or not. Finally,
the “Intel” class allows for whitelisting support, enabling
the user to whitelist certain SLDs and TLDs while

Page of 2 5

DGAIntel Domain Verification MARCH 2020

FIG. 2. DGAIntel training performance over six epochs. (A)
Training loss for each epoch, determined by binary cross entropy.
(B) Training classification accuracy for each epoch.

providing the exact same functions as the base package for
DGA prediction.

Additionally, for cybersecurity professionals who want to
utilize the model’s inference capabilities without having to
write code, we have the dgaintel.com website, which runs a
Flask application serving the model’s predictions. It also
allows retrieves WHOIS data for the domain, if it exists.
Note that despite the web interface providing WHOIS data,
the DGAIntel model does not utilize any side information
in generating its predictions.

III. RESULTS AND DISCUSSION

We implemented the DGAIntel model as described in the
section above in Python using Google’s Tensorflow deep
learning framework. Training was conducted for 6 epochs
over the aforementioned dataset. The network was trained
with the Adam optimizer. Training ran for 45 minutes on a
GPU-enabled Google Colaboratory environment. The
training loss and accuracy is shown in Figure 2. The final
validation accuracy of the model was 98.9%, averaged
across the 100,000 validation examples.

The accuracy of the DGAIntel model over the test data,
as well as that of other DGA classification models from [5],
is shown in Table 1. Our model, thanks to improvements in

TABLE 1. Comparison of DGAIntel architecture and accuracy to
other state-of-the-art DGA classification models from [5].

FIG. 3. DGAIntel test data confusion matrix. The horizontal axis
shows examples where the model predicted a domain name was
genuine or malicious, and the vertical axis shows examples where
the domain name had a ground-truth rating of being genuine or
malicious.

regularization and architectural depth, is able to outperform
other state-of-the-art models.

The confusion matrix of the model over the test dataset is
depicted in Figure 3. This shows the high precision (99.0%)
and high recall (98.9%) in addition to the accuracy of the
model. Recall that precision refers to the ability of the
model to reject false positives and that recall is the ability
of the model to reject false negatives. Low false positive
rates are very important for DGA detection as it prevents
production systems from obstructing critical network
traffic. Likewise, low false negative rates are also
incredibly important, as it means the system will be
effective in detecting malware.

Figure 4 shows the receiver-operating characteristic
(ROC) curve and the precision-recall (PRC) curve of the
model. The test set ROC-AUC score was 0.998, and the
PRC-AUC score was 0.999. These demonstrate how
DGAIntel is able to balance detecting true DGA domains
with rejecting genuine domains.

DGAIntel’s shallow implementation allows for incredibly
fast predictions. The prediction time on a single domain is

Page of 3 5

Model Architecture Accuracy

RF Random Forest 91.51%

MLP Multilayer Features 73.74%

Endgame LSTM 98.72%

CMU LSTM 98.54%

NYU CNN 98.58%

Invincea CNN 98.95%

MIT LSTM-CNN 98.70%

DGAIntel (this work) LSTM-CNN 98.94%

A

B

http://dgaintel.com

DGAIntel Domain Verification MARCH 2020

FIG. 4. Binary classification performance curves. (A) Receiver-
operating characteristic curve (ROC). (B) Precision-recall curve
(PRC).

only 286 milliseconds. Moreover, the Tensorflow model
that powers DGAIntel supports input batching, so there is a
significant improvement in speed in running predictions on
batches of domains. Figure 5 shows the dependence of
model prediction time on the prediction batch size,
compared to the expected prediction time under an
assumption of linear scaling. This shows how the model
implementation allows for efficient scaling to large tasks.

IV. CONCLUSION

In summary, we have developed the DGAIntel engine, a
lightweight implementation of a CNN-LSTM model to
detect DGA domains without the use of contextual
information. The model performance demonstrates that
deep learning is a powerful tool for intelligent detection of
malware. The model implementation also enables
cybersecurity experts to integrate DGAIntel into threat
intelligence analytics, enabling better network defense. The
codebase for this project has been open-sourced to allow
for public usage, and an intuitive website has been
implemented to allow users to utilize intelligent DGA
predictions in their work. Future work will focus on tuning

FIG. 5. DGAIntel prediction timing. The horizontal axis shows the
number of input domains in a prediction batch. The vertical axis
shows the prediction time. The blue line shows observed
prediction times, whereas the orange line shows expected times
under an assumption of linear runtime.

the model via adversarial training, optimizing the model for
performance and speed.

ACKNOWLEDGEMENTS
The first author thanks their father for his domain

expertise and inspiration. They thank Bridgewater
Associates for the opportunity to present an early version of
this research and get feedback on its real world usefulness.
They finally thank their friends and family for their
timeless support.

REFERENCES
[1] The Council of Economic Advisors, The Cost of

Malicious Cyber Activity to the U.S. Economy.
Washington, DC: Executive Office of the President of
the United States, 2018.

[2] D. Plohmdann, K. Yakdan, M. Klatt, J. Bader, and E.
Gerhards-Padilla, “A Comprehensive Measurement
Study of Domain Generating Malware,” in
Proceedings of the 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12,
2016.

[3] M. Antonakakis, “From Throw Away Traffic to Bots:
Detecting the Rise of DGA-Based Malware,” 21st
USENIX Security Symposium, Bellevue, WA, US,
August 8-10, 2012.

[4] M. Kührer, C. Rossow, and T. Holz, “Paint It Black:
Evaluating the Effectiveness of Malware Blacklists,”
Research in Attacks, Intrusions, and Defenses, 8888,
pp. 1-21, 2014.

[5] B. Yu, J. Pan, J. Hu, A. Nascimento, and M. De Cock,
‘‘Character level based detection of DGA domain
names,’’ in Proc. WCCI, Rio de Janeiro, Brazil, 2018,
pp. 4168–4175.

[6] R. R. Curtin, A. B. Gardner, S. Grzonkowski, A.
Kleymenov, and A. Mosquera, “Detecting DGA
domains with recurrent neural networks and side
information,” on Proceedings of the 14th International
Conference on Availability, Reliability, and Security,
ARES ’19, Canterbury, CA, UK, August 26-29, 2019.

[7] B. Yu, J. Pan, D. Gray, J. Hu, C. Choudhary, A.
Nascimento, and M. De Cock, “Weakly Supervised

Page of 4 5

A

B

DGAIntel Domain Verification MARCH 2020

Deep Learning for the Detection of Domain Generation
Algorithms,” in IEEE Access, vol. 7, pp. 51542-51556,
2019.

[8] “Alexa,” 2019. [Online]. Available: https://
www.alexa.com. [Accessed 2017-05-28].

[9] J. Bambenek, “OSINT DGA Feed”, 2019. [Online].
Available: https://osint.bambenekconsulting.com/feeds/
dga-feed.txt. [Accessed: November 5, 2019].

[10] “DGA Analysis,” Splunk Apps. [Online]. Available:
https://splunkbase.splunk.com/app/3559/. [Accessed:
November 5, 2019].

[11] S. Vosoughi, P. Vijayaraghavan, and D. Roy,
“Tweet2vec: Learning tweet embeddings using
character-level cnn-lstm encoder-decoder,” in
Proceedings of the 39th International ACM SIGIR
conference on Research and Development in
Information Retrieval, 2016, pp. 1041–1044.

[12] J. Woodbridge, H. S. Anderson, A. Ahuja, and D.
Grant, “Predicting Domain Generation Algorithms
with Long Short-Term Memory Networks.” [Online].
Available: arXiv, http://arxiv.org. [Accessed November
22, 2019].

[13] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, R. Jozefowicz, Y. Jia, L. Kaiser, M. Kudlur, J.
Levenberg, D. Mané, M. Schuster, R. Monga, S.
Moore, D. Murray, C. Olah, J. Shlens, B. Steiner, I.
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V.
Vasudevan, F. Viégas, O. Vinyals, P. Warden, M.
Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015.

APPENDIX

1. Code access

The source code for DGAIntel can be found on GitHub
(https://github.com/sudo-rushil/dgaintel). The packaged
code can be found on PyPI (https://pypi.org/project/
dgaintel/). Documentation for the DGAIntel API is
available on GitHub (https://github.com/sudo-rushil/
dgaintel/master/README.md). All code is released under
an MIT license.

Page of 5 5

https://github.com/sudo-rushil/dgaintel
https://pypi.org/project/dgaintel/
https://pypi.org/project/dgaintel/
https://github.com/sudo-rushil/dgaintel/master/README.md
https://github.com/sudo-rushil/dgaintel/master/README.md
https://github.com/sudo-rushil/dgaintel/master/README.md

