
DGAIntel Domain Verification MARCH 2020

DGAIntel: Targeted Identification of Domain Generation  
Algorithms with Convolutional-Recurrent Networks 

Rushil Mallarapu1♱ 

1Fairfield Ludlowe High School, 785 Unquowa Av., Fairfield, CT 
♱Email Address: rushil.mallarapu@gmail.com 

Modern malware makes use of domain generation algorithms (DGAs) to establish communications with a 
command and control (C&C) center, enabling it to execute malicious activities. DGAs generate thousands 
of domain names of which only a small percentage have been registered, to communicate with the 
botmaster, presenting an asymmetric challenge to defenders due to the scope of the detection problem. 
Despite the success of novel deep learning architectures to recognize maliciously generated domains, few 
implementations of such algorithms exist, hampering the adoption of the technology in security 
applications. Our research asked whether state-of-the-art DGA detection models could be improved upon 
for application to threat intelligence pipelines. We report the development of DGAIntel, a deep learning 
model that can identify whether a domain name is genuine or maliciously generated without auxiliary 
information. The model uses a convolution-recurrent architecture to quickly extract short and long distance 
information in domain names. Experiments show better or comparable performance to state-of-the-art DGA 
detection models. We develop a lightweight package that allows professionals to utilize the model for 
security applications. This work is a major implementation of deep learning architectures applied to DGA 
detection, and enables the integrated usage of DGA intelligence in system defense. 
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I. INTRODUCTION 
Malicious software, or malware, is used for a variety of 

unauthorized actions, from information theft to targeted 
denial of computational resources. Malware is estimated to 
cost the national economy between $57 billion and $109 
billion, making it imperative to develop novel technologies 
to mitigate its ability to achieve its goals [1]. For it to do so, 
malware needs to communicate with a command and 
control (C&C) center, to relay instructions, collect 
information, and receive updates. Botmasters – C&C 
controllers – used to hardcode IPs to allow communicating 
with their malware, leading to the connections being shut 
down upon discovery of the malware. To address this, 
malware engineers designed domain generation algorithms 
(DGAs) to allow C&C communication with malware could 
persist even after detection. 

Embedded into many forms of malware, domain 
generation algorithms work by randomly producing 
thousands of domain names and attempting  to resolve all 
of them against its DNS server [2]-[3]. The botmaster only 
needs to have registered a few of these domain names. 
When the malware-embedded DGA generates a domain 
that the botmaster has registered, it is able to establish a 
valid IP address and communicate with the C&C center. As 
such, detecting DGA domains presents an asymmetric 
challenge to defenders: with standard blacklisting, 
defenders would need to keep registering generatable 
domains, while attackers would only need one successful 
connection to communicate or execute malware [4]. DGA-
based malware includes Conficker, Stuxnet (the malware 

that attacked Iranian nuclear facilities), and Flame [5]. As 
such, cybersecurity methodologies require an intelligent 
way of detecting and responding to the use of DGAs by 
malware in order to assure network security. 

The binary classification problem this research addresses 
– detect whether a domain is maliciously generated or a 
genuine address – is well-researched in information 
security [5]. Knowledge of whether a domain name itself is 
genuine or malicious is especially useful, as gathering 
contextual information can present an additional overhead 
or may be unavailable within certain situations. Some 
algorithms use WHOIS and NXDomain records to gather 
rough predictions on whether a domain name is DGA. 
More recently, Curtin et al. proposed an RNN architecture 
for detecting DGA domains based on domain name and 
WHOIS data, but they acknowledged that their model was 
limited by disputes regarding the ability for open access to 
domain metadata [6]. 

Standard techniques for DGA detection with machine 
learning over domain names involve classification based on 
engineered text features, but this makes the model both 
vulnerable to adversarial training and impeded in detecting 
classifiable boundaries when observed DGA features 
overlap with those of genuine domains [5]. The use of deep 
learning methodologies enables DGA detection algorithms 
to avoid the dependence on feature engineering, as such 
models learn implicit features. As such, active research on 
DGA detection focuses on developing various deep 
learning architectures suited to the task, see e.g. [5]-[7]. We 
report the development of DGAIntel, which implements a 
convolutional-recurrent architecture for binary DGA 

Page  of 1 5



DGAIntel Domain Verification MARCH 2020

classification in a lightweight package easily deployable for 
usage by cybersecurity architects. 

II. METHODS 

1. Data 

We combined data from three varied sources; the top 
million domain names on Alexa, the Bambenek DGA feed, 
and the Splunk DGA detection dataset. Alexa records the 
top one million domain names with respect to the number 
of page views by unique visitors [8]. We implicitly assume 
the domains in the Alexa dataset are genuine domains. 

The Bambenek Consulting DGA domain feed provided 
700,000 known DGA domains. This feed collects DGA 
domains from known DGA families in live network traffic 
by comparing domain names generated from known DGA 
algorithms to those encountered in network traffic [9]. It is 
important to note that DGAIntel is designed to perform 
binary detection of DGA domains, agnostic of DGA family, 
which allows the model to be effective against previously 
unknown malware. 

The Splunk DGA dataset contains 100,000 mixed 
examples of DGA and genuine domains [10]. The dataset 
was originally curated to demonstrate the difficulty in 
classifying DGA domains via standard string informatics 
metrics (n-grams, entropy, etc.). 

The dataset was randomly split into training (1,500,000 
examples), validation (100,000 examples), and test (10,000 
examples) sets. Furthermore, to prevent the model from 
developing an over-reliance on the TLD as a classification 
benchmark, 25% of the domain names were stripped of 
their TLD and subdomain, allowing the model to better 
recognize malicious characteristics in the base domain 
name. 

2. Architecture 

At a high level, DGAIntel uses a stacked convolutional-
recurrent architecture inspired by state-of-the-art models for 
text mining [11], [12]. This allows the model to learn 
classifiable differences over both short-distance and long-
distance patterns in domain names. The model architecture 
is derived from one presented in Yu et al., with 
modifications made to improve generalizability and 
performance [5]. The string passed as input to the model 
consists of the full domain name. This name is then 
converted into an integer sequence via a static 
capitalization-agnostic embedding and padded to a 
maximum character length of 81. It is then passed through a 
learnable vector embedding that converts each character 
into a 128-dimensional vector encoding its information. 
This results in the domain name being converted as an 81 
by 128 matrix, where each column represents one character. 

The embedded domain name is first passed through a 
convolutional neural network (CNN). CNNs are well 
known for their ability to recognize local informational 
correlations, especially in the domain of 2D image 
processing. They have also been used in their 1D variant to  

FIG. 1. Diagram of DGAIntel network architecture. The domain 
name is first embedded into a high-dimensional vector encoding. 
It is then passed through sequential convolutional and LSTM 
layers to further encode its lexical information. Finally, a dense 
layer uses the embedded domain vector to predict whether the 
domain name is legitimate or malicious. 

to perform “temporal” classification of character sequences. 
In this instance, we use a single CNN layer to further 
embed the character-level domain name in a context aware 
manner. 

The vector is then passed through a long short-term 
memory layer (LSTM), a specialized type of recursive 
neural network (RNN). LSTMs are known for their state of 
the art performance on sequence-related learning. 
Therefore, they are a natural choice for classifying patterns 
in text sequences, such as domain names. We use a single 
LSTM layer, which embeds the entire domain name into a 
64 by 1 vector. 

The network finally performs binary classification on this 
CNN-LSTM embedded domain vector to predict whether 
the input domain name is or is not DGA. The full network 
architecture is shown in Figure 1. We use a shallow 
network architecture to enable both fast predictions and to 
prevent over utilization of computational resources. The 
results below show we are able to maintain state-of-the-art 
performance despite this shallow architecture. 

3. Implementation 

The network architecture described above was 
implemented in Python. We utilized Google’s Tensorflow 
framework with the Keras API to build and train the 
network architecture [13]. As a main goal of this research is 
to enable widespread utilization of deep learning in 
malware detection, we make all our code available in the 
DGAIntel package for Python, which can be accessed on 
GitHub and PyPI. See appendix for access. 

The model was implemented with the intention of being 
lightweight, intuitive, and uncomplicated. As such, it only 
supplies three objects. The “get_prob” function returns the 
predicted likelihood of the input domain names being 
DGA, where a prediction score of one indicates that the 
domain name is DGA. The “get_prediction” implicitly uses 
that function to return full strings describing whether 
domain names in a list or text file are DGA or not. Finally, 
the “Intel” class allows for whitelisting support, enabling 
the user to whitelist certain SLDs and TLDs while  
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FIG. 2. DGAIntel training performance over six epochs. (A) 
Training loss for each epoch, determined by binary cross entropy. 
(B) Training classification accuracy for each epoch. 

providing the exact same functions as the base package for 
DGA prediction. 

Additionally, for cybersecurity professionals who want to 
utilize the model’s inference capabilities without having to 
write code, we have the dgaintel.com website, which runs a 
Flask application serving the model’s predictions. It also 
allows retrieves WHOIS data for the domain, if it exists. 
Note that despite the web interface providing WHOIS data, 
the DGAIntel model does not utilize any side information 
in generating its predictions. 

III. RESULTS AND DISCUSSION 

We implemented the DGAIntel model as described in the 
section above in Python using Google’s Tensorflow deep 
learning framework. Training was conducted for 6 epochs 
over the aforementioned dataset. The network was trained 
with the Adam optimizer. Training ran for 45 minutes on a 
GPU-enabled Google Colaboratory environment. The 
training loss and accuracy is shown in Figure 2. The final 
validation accuracy of the model was 98.9%, averaged 
across the 100,000 validation examples. 

The accuracy of the DGAIntel model over the test data, 
as well as that of other DGA classification models from [5], 
is shown in Table 1. Our model, thanks to improvements in  

TABLE 1. Comparison of DGAIntel architecture and accuracy to 
other state-of-the-art DGA classification models from [5]. 

FIG. 3. DGAIntel test data confusion matrix. The horizontal axis 
shows examples where the model predicted a domain name was 
genuine or malicious, and the vertical axis shows examples where 
the domain name had a ground-truth rating of being genuine or 
malicious. 

regularization and architectural depth, is able to outperform 
other state-of-the-art models. 

The confusion matrix of the model over the test dataset is 
depicted in Figure 3. This shows the high precision (99.0%) 
and high recall (98.9%) in addition to the accuracy of the 
model. Recall that precision refers to the ability of the 
model to reject false positives and that recall is the ability 
of the model to reject false negatives. Low false positive 
rates are very important for DGA detection as it prevents 
production systems from obstructing critical network 
traffic. Likewise, low false negative rates are also 
incredibly important, as it means the system will be 
effective in detecting malware.  

Figure 4 shows the receiver-operating characteristic 
(ROC) curve and the precision-recall (PRC) curve of the 
model. The test set ROC-AUC score was 0.998, and the 
PRC-AUC score was 0.999. These demonstrate how 
DGAIntel is able to balance detecting true DGA domains 
with rejecting genuine domains. 

DGAIntel’s shallow implementation allows for incredibly 
fast predictions. The prediction time on a single domain is  
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Model Architecture Accuracy

RF Random Forest 91.51%

MLP Multilayer Features 73.74%

Endgame LSTM 98.72%

CMU LSTM 98.54%

NYU CNN 98.58%

Invincea CNN 98.95%

MIT LSTM-CNN 98.70%

DGAIntel (this work) LSTM-CNN 98.94%

A

B
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FIG. 4. Binary classification performance curves. (A) Receiver-
operating characteristic curve (ROC). (B) Precision-recall curve 
(PRC). 

only 286 milliseconds. Moreover, the Tensorflow model 
that powers DGAIntel supports input batching, so there is a 
significant improvement in speed in running predictions on 
batches of domains. Figure 5 shows the dependence of 
model prediction time on the prediction batch size, 
compared to the expected prediction time under an 
assumption of linear scaling. This shows how  the model 
implementation allows for efficient scaling to large tasks. 

IV. CONCLUSION 

In summary, we have developed the DGAIntel engine, a 
lightweight implementation of a CNN-LSTM model to 
detect DGA domains without the use of contextual 
information. The model performance demonstrates that 
deep learning is a powerful tool for intelligent detection of 
malware. The model implementation also enables 
cybersecurity experts to integrate DGAIntel into threat 
intelligence analytics, enabling better network defense. The 
codebase for this project has been open-sourced to allow 
for public usage, and an intuitive website has been 
implemented to allow users to utilize intelligent DGA 
predictions in their work. Future work will focus on tuning  

FIG. 5. DGAIntel prediction timing. The horizontal axis shows the 
number of input domains in a prediction batch. The vertical axis 
shows the prediction time. The blue line shows observed 
prediction times, whereas the orange line shows expected times 
under an assumption of linear runtime. 

the model via adversarial training, optimizing the model for 
performance and speed. 
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APPENDIX 

1. Code access 

The source code for DGAIntel can be found on GitHub 
(https://github.com/sudo-rushil/dgaintel). The packaged 
code can be found on PyPI (https://pypi.org/project/
dgaintel/). Documentation for the DGAIntel API is 
available on GitHub (https://github.com/sudo-rushil/
dgaintel/master/README.md). All code is released under 
an MIT license.
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