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Étale cohomology is a ubiquitous and useful tool in studying the topology of algebraic
varieties, and has been successfully employed in proving the Weil conjectures, deep-
reaching statements about the arithmetic content of such varieties over finite fields. We
give an overview of étale cohomology, introduce the (now proved) Weil conjectures, and
discuss a much simpler proof in the case of curves.
This is a report for the Fall ’23 Harvard Directed Reading Program, which I did with

Sanath Devalapurkar. All mistakes are my own; please contact me if you spot anything!

1. Étale Morphisms and Étale Cohomology

The notion of étale is pervasive in algebraic geometry. It provides a notion of “local
isomorphism” that is much closer to the intuitions of analytic varieties; in particular, the
étale topology on a scheme is fine enough for a useful version of cohomology groups, en-
abling one to do “algebraic topology” with varieties. I learned this material from [Tam94]
and [FK88], but found [Mil13] surprisingly readable.

Étale morphisms and the étale topology. To start, we review the definition and intu-
itions behind étale morphisms.

Definition 1.1. Let 𝑓 ∶𝑋 Ð→ 𝑌 be a locally finitely presentedmorphism of schemes. We say
𝑓 is étale if 𝑓 is flat and unramified; that is, for each 𝑦 ∈ 𝑌 , the fiber 𝑋𝑦 as a ^(𝑦)-scheme
is the union of the spectrum of finite separable extensions of ^(𝑦) [Tam94, 1.1.1].

Étale morphisms are quite nice: they are stable under composition, base change, and
cancellation; i.e. if 𝑋,𝑌 are schemes étale over some base 𝑆 and 𝑓 ∶𝑋 Ð→ 𝑌 is a map of
𝑆-schemes, then 𝑓 is automatically étale. Open immersions are also étale; this translates
into the étale topology being finer than the Zariski one.
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Gaining a good intuition for what “étale” means took me a while: here are some alter-
native definitions/perspectives I like. First, let 𝑓 ∶𝑋 Ð→ 𝑌 be a morphism and 𝑇 ↪̸ 𝑇 ′ a
first order thickening (i.e. 𝑇 ⊂ 𝑇 ′ is a closed subscheme defined by a square-zero sheaf of
ideals). Then, we can consider lifts of 𝑇 -rational points of 𝑋 over 𝑌 to 𝑇 ′-rational points,
i.e. dotted arrows in the diagram

𝑇 𝑋

𝑇 ′ 𝑌

Then, we say 𝑓 is formally unramified if there exists at most one lift. It is formally smooth
if there exists at least one lift, and and is formally étale if there is exactly one lift [Sta22,
02HG]. If we add lfp to this, we can drop the “formal,” and we see that étale is the same
as smooth and unramified.
There’s also a differential criterion for these properties, more analogous to the differential-

geometric notions of immersions, submersions, and local isomorphisms. It turns out that
a morphism 𝑓 is formally unramified iff Ω𝑋/𝑌 = 0, and 𝑓 is smooth iff Ω𝑋/𝑌 is finite
locally free (of constant rank). Thus, being unramified is like being an immersion, and be-
ing smooth is like being a submersion (with a margin of interpretation error). From this
perspective, being étale is the algebro-geometric analog of being a local isomorphism.
However, being a local isomorphism in the Zariski topology is significantly stronger; in
many ways, this is part of why étale cohomology is used as a replacement of ordinary
“topological” cohomology for varieties/schemes.

Definition 1.2. Let𝑋 be a scheme, and Et(𝑋) the category of étale𝑋 -schemes. The small
étale site of 𝑋 is the category Et(𝑋) (in which all maps are étale), and coverings {𝑈𝑖 Ð→𝑈 }
are jointly surjective families of étale morphisms over 𝑋 [Sta22, 021B].

With this, we can consider the category Sh𝑒𝑡(𝑋) of abelian sheaves on the small étale
site of𝑋 ; this is an abelian category, and the right derived functors of the (left exact) global
sections functor Γ(𝑋,−)∶ Sh𝑒𝑡(𝑋)Ð→ Ab are the étale cohomology groups.

Example 1.1. If 𝑍 is an 𝑋 -scheme, then it represents a presheafℱ(𝑈 ) = Hom𝑋(𝑈 ,𝑍); it
turns out this is actually a sheaf (in other words, the étale topology is subcanonical). As
an example, consider the varieties `𝑛 (defined by 𝑥𝑛 − 1 = 0) or G𝑚, the punctured affine
line. These define étale sheaves `𝑛,G𝑚, with `𝑛(𝑈 ) being the 𝑛th roots of unity of 1 in
Γ(𝑈 ,𝒪𝑈 ) and G𝑚(𝑈 ) = Γ(𝑈 ,𝒪𝑈 )× [Mil13, 6.10]. The Kummer sequence relates these via

0Ð→ `𝑛 Ð→ G𝑚
×𝑛Ð→ G𝑚 Ð→ 0,

which can be used to compute the cohomology of curves. In fact, it turns out that in
general 𝐻 0(𝑋𝑒𝑡 ,G𝑚) = Γ(𝑋,𝒪𝑋)× and 𝐻 1(𝑋𝑒𝑡 ,G𝑚) = Pic(𝑋).
As an example of why étale cohomology is the “right” notion cohomology for schemes,

consider the case of curves:
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Proposition 1.3 (Étale cohomology of curves). Let 𝑋 be a connected complete algebraic
curve over a separably closed field 𝑘 . Then for 𝑛 relatively prime to the characteristic of 𝑘 ,

𝐻𝑞(𝑋𝑒𝑡 , `𝑛) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

`𝑛(𝑘) 𝑞 = 0
𝑛 Pic(𝑋) 𝑞 = 1
Pic(𝑋)𝑛 𝑞 = 2
0 𝑞 > 2,

where 𝑛 Pic(𝑋) and Pic(𝑋)𝑛 are the kernel (resp. cokernel) of the multiplication by 𝑛 map on
Pic(𝑋). If 𝑋 is smooth, then 𝑛 Pic(𝑋) ≃ (Z/𝑛Z)2𝑔 and Pic(𝑋)𝑛 ≃ Z/𝑛Z, where 𝑔 is the genus
of 𝑋 [Tam94, 10.3.5].
Under these assumptions, we also have an isomorphism `𝑛 ≃ Z/𝑛Z, where the RHS is

the constant sheaf, given by choosing a primitive root of unity. Thus, this computation
shows that the ranks of the cohomology groups 𝐻𝑞(𝑋𝑒𝑡 ,Z/𝑛Z) are 1, 2𝑔, and 1, just as in
the case of the topological cohomology Riemann surfaces.

Workhorse theorems of étale cohomology. To conclude this flyby of étale cohomol-
ogy, we record some useful theorems. First, consider a pullback diagram of schemes

𝑋 ′ 𝑌 ′

𝑋 𝑌
𝑓

𝑓
′

𝑔𝑔
′

For any abelian sheaf ℱ on 𝑋𝑒𝑡 , 𝑞 ≥ 0, there is a base change morphism

𝑔∗(𝑅𝑞 𝑓∗ℱ)Ð→ 𝑅𝑞 𝑓 ′
∗
(𝑔′∗ℱ).

Theorem 1.4 (Base Change for Smooth/Proper Morphisms). Let either of the two condi-
tions be satisfied:

(1) 𝑓 is a proper morphism and ℱ is a torsion sheaf.

(2) 𝑓 is qcqs, 𝑔 is smooth, and ℱ is ℓ-torsion with ℓ invertible on 𝑌 .

Then the base change morphism is an isomorphism [Tam94, 11.3.1,5].
Corollary 1.5. Let 𝑘 ⊂ 𝑘 ′ be separably closed fields, 𝑋 proper over 𝑘 , and𝑋 ′ = 𝑋 ×𝑘 𝑘 ′. Then
for ℱ a torsion sheaf on 𝑋𝑒𝑡 , 𝑞 ≥ 0,

𝐻𝑞(𝑋,ℱ) ≃ 𝐻𝑞(𝑋 ′,ℱ′),
with ℱ′ the pullback ofℱ under 𝑋 ′ Ð→ 𝑋 [Tam94, 11.3.4].
Finally, we have the following finiteness theorem.

Theorem 1.6 (Finiteness). Let𝑋 be a smooth algebraic scheme over a separably closed field
𝑘 , ℱ a locally constant finite abelian sheaf of order coprime to the characteristic of 𝑘 . Then
the groups 𝐻𝑞(𝑋𝑒𝑡 ,ℱ) are finite for all 𝑞 ≥ 0 [Tam94, 11.4.3].
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2. The Weil Conjectures

As an illustration of one of the greatest successes of étale cohomology, we briefly discuss
the Weil conjectures, a family of statements on the number-theoretic content of algebraic
varieties, whose original proof by Deligne relied on étale cohomology. Much of this pre-
sentation comes from [Mil13] and [FK88].
Let 𝑋 be a nonsingular projective variety over F𝑞 , for 𝑞 = 𝑝𝑎 with 𝑝 prime. For each

𝑚 = 1, 2, . . . , let 𝑁𝑚 be the number of F𝑞𝑚-rational points of 𝑋 .

Definition 2.1. The zeta function of 𝑋 is the formal power series

𝑍𝑋(𝑡) = exp(∑
𝑚≥1

𝑁𝑚

𝑡𝑚

𝑚
) ,

i.e. with
𝑑

𝑑𝑡
log𝑍𝑋(𝑡) = ∑

𝑚≥1
𝑁𝑚𝑡

𝑚−1

being the generating function for 𝑁1, 𝑁2, . . . .

The Weil conjectures are about controlling the behavior of this zeta function, and thus
getting a grasp on the arithmetic data it contains.

Theorem 2.2 (Weil Conjectures). Let 𝑋 have dimension 𝑑 , and let 𝜒 be the Euler-Poincaré
characteristic of 𝑋F𝑞 , for a fixed choice of algebraic closure F𝑞 .

(a) (Rationality) 𝑍𝑋(𝑡) is a rational function of 𝑡 .

(b) (Functional equation) We have 𝑍(1/𝑞𝑑𝑡) = ±𝑞𝑑𝜒/2𝑡 𝜒𝑍(𝑡).

(c) (Riemann hypothesis) We can write

𝑍𝑋(𝑡) =
𝑃1(𝑡)𝑃3(𝑡)⋯𝑃2𝑑−1(𝑡)
𝑃0(𝑡)𝑃2(𝑡)⋯𝑃2𝑑(𝑡)

,

with 𝑃0(𝑡) = 1 − 𝑡 , 𝑃2𝑑(𝑡) = 1 − 𝑞𝑑𝑡 , and for 𝑟 = 1, . . . , 2𝑑 − 1,

𝑃𝑟(𝑡) =
𝛽𝑟

∏
𝑖=1
(1 − 𝛼𝑟,𝑖𝑡),

with 𝛼𝑟,𝑖 algebraic integers of absolute value 𝑞𝑟/2.

(d) (Betti numbers) The degrees 𝛽𝑟 of 𝑃𝑟(𝑡) are equal to the classical Betti numbers of𝑋F𝑞 ,
considered as a complex variety.
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Remark 2.1. To see why (c) is called the Riemann hypothesis, let us define the zeta func-
tion of a finite type Z-scheme 𝑌 via

Z𝑌 (𝑠) = ∏
𝑦 closed

1
1 −𝑁 (𝑦)−𝑠 ,

where 𝑁 (𝑦) is the order of ^(𝑦), which is finite iff 𝑦 is closed. For ℜ(𝑠) > dim𝑌 this
product coverges, giving a holomorphic function. For 𝑌 = Spec𝑍 , this is Riemann’s zeta
function. If we regard 𝑋 as above as a finite type Z-scheme, then some algebraic manip-
ulation shows that

𝑍𝑋(𝑡) = ∏
𝑥 closed

1
1 − 𝑡deg𝑥 ,

so Z𝑋(𝑠) = 𝑍𝑋(𝑞−𝑠). The Riemann hypothesis for 𝑋 says that the zeros of Z𝑋(𝑠) are 𝑠

satisfying 1 = 𝛼𝑞−𝑠 , with ∣𝛼𝑞−𝑠 ∣ = 𝑞𝑟/2−𝑠 with 𝑟 = 1, . . . , 2𝑑 − 1, and likewise for poles.
Thus, the zeros of Z𝑋(𝑠) lie on the lines ℜ(𝑠) = 1

2,
3
2, . . . ,

2𝑑−1
2 , and its poles on the lines

ℜ(𝑠) = 0, 1, . . . ,𝑑 . [Mil13, 26.1].

On a historical note, Weil did not make conjectures lightly; they were originally conjec-
tured in a paper full of computations verifying these conjectures in simple cases, and he
proved them for the case of curves, which we give a short account of later [Wei49]. The
form of these conjectures is derived largely from the ideas of algebraic topology, and the
use of cohomology to dualize cocycles or count fixed points: a key observation here is that
if 𝑋 B 𝑋F𝑞 and 𝐹 is the F𝑞-linear 𝑞th power Frobenius on 𝑋 , then the F𝑞𝑛-rational points
of 𝑋 correspond to the fixed points of 𝐹𝑛. This is where the notion of a “Weil cohomol-
ogy theory” comes from – a cohomology theory for algebraic varieties which is refined
enough and “algebraic-topological” enough to prove these conjectures.
The Weil conjectures can be proved through a version of étale cohomology known as

ℓ-adic cohomology: despite most of the theorems of étale cohomology being stated with
finite coefficients, this is an extension to characteristic 0.

Definition 2.3. An ℓ-adic sheaf on 𝑋 is an inverse system (ℱ𝑛, 𝑓𝑛+1∶ℱ𝑛+1 Ð→ℱ𝑛) with
(a) eachℱ𝑛 a constructible sheaf of Z/ℓ𝑛Z-modules, and

(b) 𝑓𝑛+1 inducing an isomorphismℱ𝑛+1/ℓ𝑛ℱ𝑛+1 Ð→ℱ𝑛.

For such an ℓ-adic sheafℱ = (ℱ𝑛), the ℓ-adic cohomology of 𝑋 is

𝐻∗(𝑋𝑒𝑡 , 𝐹) = lim←Ð𝐻∗(𝑋𝑒𝑡 ,ℱ𝑛).

Beware that this is not the same as 𝐻∗(𝑋𝑒𝑡 , lim←Ðℱ𝑛) [Mil13, 19].

For example, we have

𝐻∗(𝑋𝑒𝑡 ,Zℓ) = lim←Ð𝐻∗(𝑋𝑒𝑡 ,Z/ℓ𝑛Z),

and can extend this to field coefficients via 𝐻∗(𝑋,Qℓ) = 𝐻∗(𝑋,Zℓ) ⊗Zℓ Qℓ . In particular,
this ℓ-adic cohomology supports a version of Poincaré duality and a Lefschetz theorem:
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Theorem 2.4 (Poincaré Duality). Letℱ⊗Qℓ be a locally constant locally free constructible
ℓ-adic sheaf. Then, there exists a natural nondegenerate pairing

𝐻𝑝 (𝑋,Hom(ℱ ⊗Qℓ ,Q(𝑑))) ×𝐻 2𝑑−𝑝
𝑐 (𝑋,ℱ ⊗Qℓ)Ð→ Qℓ .

Here the second factor is cohomology with compact support (i.e. 𝑅Γ𝑐(𝑋𝑒𝑡 ,−)) [FK88, II.1.17].

Theorem 2.5 (Lefschetz Fixed-Point Theorem). Let 𝑋 be a complete nonsingular variety
over an algebraically closed field 𝑘 = 𝑘 , and 𝜑 ∶𝑋 Ð→ 𝑋 a regular map. Then, if Γ𝜑 is the graph
of 𝜑 and Δ is the diagonal in 𝑋 ×𝑋 , we have

Γ𝜑 ⋅ Δ =∑(−1)𝑟 Tr(𝜑 ∣ 𝐻 𝑟(𝑋,Qℓ)).

See [Mil13, 25.1] or [FK88, II.2.9].

These two theorems go a long way to proving the Weil conjectures: the functional
equation is a consequence of Poincaré duality, and rationality and Betti numbers can be
deduced from the Lefschetz theorem. More precisely, one can show that if 𝑋 has dimen-
sion 𝑑 , then

𝑍𝑋(𝑡) =
𝑃1(𝑡)⋯𝑃2𝑑−1(𝑡)
𝑃0(𝑡)⋯𝑃2𝑑(𝑡)

with 𝑃𝑟(𝑡) = det (1 − 𝐹𝑡 ∣ 𝐻 𝑟(𝑋0,Qℓ)) [Mil13, 27.6], with the functional equation and Betti
number conjecture also holding.
Originally, Grothendieck made the step of using étale cohomology and these algebraic

topology-inspired tools to prove all the Weil conjectures but the Riemann hypothesis.
That result is due to Deligne, who used techniques from representation theory and the
geometry of “Lefschetz pencils” to derive estimates on the ∣𝛼𝑟,𝑖 ∣’s. However, Weil knew
this result for curves much earlier, and it is this simpler proof of the Riemann hypothesis
we present below.

3. Weil’s Proof for Curves

This section outlines Weil’s original proof of the Riemann hypothesis for curves, using
the much simpler and classical machinery of intersection theory on surfaces. My presen-
tation draws from [Ji21] and exercises V.1.9 and V.1.10 in [Har77]. The place we start is
the following: we have

𝑍𝑋(𝑡) =
∏2𝑔

𝑖=1(1 − 𝛼𝑖𝑡)
(1 − 𝑡)(1 − 𝑞𝑡),

satisfying the functional equation 𝑍𝑋(1/𝑞𝑡) = 𝑞1−𝑔𝑡2−2𝑔𝑍𝑋(𝑡), with the 𝛼𝑖 being algebraic
integers in conjugate pairs with∏2𝑔

𝑖=1 𝑎𝑖 = 𝑞𝑔. To prove the Riemann hypothesis, which in
this case means ∣𝛼𝑖 ∣ =

√
𝑞, we first prove an intermediate Hasse-Weil bound.
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Some recollections from intersection theory. We’ll need the following two results
from intersection theory on surfaces; recall that we have a bilinear intersection form (−⋅−)
from the group of divisors on a surface 𝑋 to Z, which, for curves 𝐶,𝐷 on 𝑋 sharing no
irreducible components, recovers the classical notion of 𝐶 ⋅𝐷 = #(𝐶 ∩𝐷). In fact, in this
case, we can show that 𝐶 ⋅𝐷 = deg𝐶𝒪(𝐷)∣𝐶 [Vak22, 21.2.A].

Lemma 3.1. Let 𝐶 be a curve on a surface 𝑋 . Then the self-intersection number 𝐶2 = 𝐶 ⋅𝐶
is deg𝐶 𝒩𝐶/𝑋 .

Proof. By definition, for ℐ = 𝒪𝑋(−𝐶) being the ideal sheaf of 𝐶 in 𝑋 , the conormal sheaf
isℐ/ℐ2∣𝐶 , which by [Vak22, 22.2.H] is isomorphic to𝒪(−𝐶)∣𝐶 . The degree of the dual of
this sheaf, 𝒪(𝐶)∣𝐶 , is precisely 𝐶2. □

Next, we have the Hodge index theorem:

Theorem 3.2 (Hodge Index Theorem). Let 𝐻 be an ample divisor on a surface 𝑋 , and
suppose 𝐷 is a numerically nontrivial divisor with 𝐷 ⋅𝐻 = 0. Then 𝐷2 < 0 [Har77, V.1.9].
This can be weakened to the statement that if 𝐷 is any divisor with 𝐷 ⋅ 𝐻 = 0, then

𝐷2 ≤ 0. Combining these allow us to prove a useful estimate:

Lemma 3.3. Let 𝑋 =𝐶 ×𝐶 ′ be the product of two curves, and 𝑙 = [𝐶 ×∗],𝑚 = [∗×𝐶 ′]. If 𝐷
is a divisor on 𝑋 , 𝑎 = 𝐷 ⋅ 𝑙 , 𝑏 = 𝐷 ⋅𝑚, then 𝐷2 ≤ 2𝑎𝑏.

Proof. Consider the divisor𝐻 = 𝑙+𝑚, which is ample by Nakai-Moishezon [Har77, V.1.10],
and 𝐸 = 𝑙 −𝑚. We have 𝐻 2 = 2, 𝐸2 = −2, and 𝐻 ⋅ 𝐸 = 0.

𝐷 ′ B (𝐻 2)(𝐸2)𝐷 − (𝐸2)(𝐷 ⋅ 𝐸)𝐻 − (𝐻 2)(𝐷 ⋅𝐻)𝐸.

We compute that 𝐻 ⋅𝐷 ′ = (𝐻 2)(𝐷 ⋅𝐻)(𝐸 ⋅𝐻) = 0, so by 3.2

𝐷 ′ ⋅𝐷 ′ = (𝐻 2)2(𝐸2)2(𝐷2) + (𝐸2)2(𝐷 ⋅ 𝐸)2(𝐻 2) + (𝐻 2)2(𝐷 ⋅𝐻)2(𝐸2)
− (𝐻 2)(𝐸2)2(𝐷 ⋅ 𝐸)(𝐷 ⋅𝐻) − (𝐻 2)2(𝐸2)(𝐷 ⋅𝐻)(𝐷 ⋅ 𝐸)
= 16𝐷2 + 8(𝑎 −𝑏)2 − 8(𝑎 +𝑏)2 − 8(𝑎 −𝑏)(𝑎 +𝑏) + 8(𝑎 −𝑏)(𝑎 +𝑏)

= 16(𝐷2 + 1
2
((𝑎 −𝑏)2 − (𝑎 +𝑏)2))

= 16 (𝐷2 − 2𝑎𝑏) ≤ 0
Ô⇒ 𝐷2 ≤ 2𝑎𝑏,

thus completing the proof [Har77, Exercise V.1.9]. □

The Hasse-Weil Bound. Now we apply the previous estimate to divisors on the surface
𝑌 = 𝑋 ×𝑋 (here we consider 𝑋 and all products over F𝑞). Let Δ be the diagonal 𝑋 ↪̸ 𝑌 and
Γ be the graph of the 𝑞th power relative Frobenius 𝐹 over F𝑞 . Note that if 𝑓 = 𝐹 ×1∶𝑌 Ð→ 𝑌 ,
then Γ = 𝑓 ∗Δ. Finally, let 𝑁 be the number of F𝑞-rational points of 𝑋 : the Hasse-Weil
bound aims to control the error term between 𝑁 and 𝑞 + 1.
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Lemma 3.4. With the notation as above, and letting 𝑔 denote the genus of 𝑋 , we have

(a) Δ2 = 2 − 2𝑔,

(b) Δ ⋅ Γ = 𝑁 ,

(c) Γ2 = 𝑞(2 − 2𝑔).

Proof. (a) Note that ifℐ is the ideal sheaf of Δ, thenℐ/ℐ2∣𝑋 ≃ Ω1
𝑋 (almost by definition).

Thus, Δ2 = deg(Ω1
𝑋)∨ = −(2𝑔 − 2) = 2 − 2𝑔.

(b) The fixed points of 𝐹 on 𝑋 are precisely the F𝑞-rational points of 𝑋 ; to see that Δ ⋅ Γ
gives this number, we need to check that the intersection points are reduced. On define
space, this means checking that

𝑘

∏
𝑖=1

SpecF𝑞[𝑥𝑖]/(𝑥𝑞𝑖 − 𝑥𝑖)

is reduced. Taking derivatives, we see that 𝑑𝑥𝑖 = 0, so this holds.
(c) Finally, by [Vak22, 21.1.J], we have Γ ⋅ Γ = 𝑓 ∗Δ ⋅ 𝑓 ∗Δ = (deg 𝑓 )(Δ ⋅Δ) = 𝑞(2− 2𝑔) □

Also, if 𝑙 = 𝑋 × ∗ and𝑚 = ∗ ×𝑋 for ∗ ∈ 𝑋 , then Δ ⋅ 𝑙 = Δ ⋅𝑚 = 1 and Γ ⋅ 𝑙 = 𝑞, Γ ⋅𝑚 = 1.

Proposition 3.5 (Hasse-Weil Bound). In the notation above, we have

∣𝑁 − 𝑞 − 1∣ ≤ 2𝑔√𝑞.

Proof. Consider the divisor 𝐷 = 𝑟Γ + 𝑠Δ, which has

𝐷2 = 𝑟 2𝑞(2 − 2𝑔) + 2𝑟𝑠𝑁 + 𝑠2(2 − 2𝑔).

Moreover, 𝐷 ⋅ 𝑙 = 𝑟𝑞 + 𝑠 and 𝐷 ⋅𝑚 = 𝑟 + 𝑠 . By 3.3, we get

𝑟 2𝑞 − 𝑟 2𝑞𝑔 + 𝑟𝑠𝑁 + 𝑠2 − 𝑠2𝑔 ≤ (𝑟𝑞 + 𝑠)(𝑟 + 𝑠) = 𝑟 2𝑞 + 𝑟𝑠(𝑞 + 1) + 𝑠2.

Rearranging gives 𝑟𝑠(𝑁 − 𝑞 − 1) ≤ 𝑟 2𝑞𝑔 + 𝑠2𝑔. Assume that 𝑟 ≠ 0, 𝑠 ≠ 0; in either case the
resulting bound is useless. Depending on if 𝑟𝑠 is positive or negative, dividing gives

∣𝑁 − 𝑞 − 1∣ ≤ 𝑔 ∣𝑟𝑞
𝑠
+ 𝑠
𝑟
∣ .

Now, letting 𝑥 = 𝑟/𝑠 ∈ Q − {0}, we see that ∣𝑥𝑞 + 𝑥−1∣, as a function of 𝑥 , has minimum
2√𝑞. Ergo, the RHS can be made arbitrarily close to 2√𝑞, thus completing the proof. □
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The Riemann hypothesis for curves. With this in hand, we can complete the proof of
the Riemann Hypothesis for curves. Recall that we have expressed the zeta function as

𝑍𝑋(𝑡) =
∏2𝑔

𝑖=1(1 − 𝛼𝑖𝑡)
(1 − 𝑡)(1 − 𝑞𝑡),

with the 𝛼𝑖 algebraic integers in conjugate pairs, and∏2𝑔
𝑖=1 𝛼𝑖 = 𝑞𝑔. Thus, to show ∣𝛼𝑖 ∣ =

√
𝑞

as desired, it suffices to show that ∣𝛼𝑖 ∣ ≤
√
𝑞.

Lemma 3.6. Let 𝑁𝑚 be the number of F𝑚𝑞 -rational points of 𝑋 . Then 𝑎𝑚 B 𝑁𝑚 − 𝑞𝑚 − 1
satisfies ∣𝑎𝑚∣ ≤ 2𝑔

√
𝑞𝑚 and 𝑎𝑚 = ∑2𝑔

𝑖=1 𝛼
𝑚
𝑖 .

Proof. The first claim follows immediately from 3.5. Next, we know that

∑
𝑚≥1

𝑁𝑚𝑡
𝑚−1 = 𝑑

𝑑𝑡
log𝑍𝑋(𝑡)

= 𝑑

𝑑𝑡
(
2𝑔

∑
𝑖=1

log(1 − 𝛼𝑖𝑡) − log(1 − 𝑡) − log(1 − 𝑞𝑡))

= −
2𝑔

∑
𝑖=1

𝛼𝑖

1 − 𝛼𝑖𝑡
+ 1
1 − 𝑡 +

𝑞

1 − 𝑞𝑡

= ∑
𝑚≥1
(1 + 𝑞𝑚 +

2𝑔

∑
𝑖=1

𝛼𝑚𝑖 ) 𝑡𝑚−1.

Comparing coefficients, we conclude that 𝑎𝑚 = ∑2𝑔
𝑖=1 𝛼

𝑚
𝑖 , as desired. □

Proposition 3.7 (RH for curves). For each 𝑖 , ∣𝛼𝑖 ∣ ≤
√
𝑞.

Proof. For the sake of contradiction, assumeWLOG that ∣𝛼1∣ = max𝑖 ∣𝛼𝑖 ∣ >
√
𝑞. Then, write

∑
𝑚≥1

𝑎𝑚𝑡
𝑚 =

2𝑔

∑
𝑖=1

𝛼𝑖𝑡

1 − 𝛼𝑖𝑡
.

Note that the LHS converges absolutely on the disc ∣𝑡 ∣ < 𝑞−1/2, as here we have

∑
𝑚≥1
∣𝑎𝑚𝑡𝑚∣ < ∑

𝑚≥1
2𝑔∣𝑞𝑚/2𝑡𝑚∣,

where the latter sum converges for ∣𝑞1/2𝑡 ∣ < 1. Thus, as 𝑡 Ð→ 𝛼−11 , we have ∣𝑎𝑚𝑡𝑚∣ Ð→
∣𝑎𝑚𝛼−𝑚1 ∣ < 2𝑔∣𝑞𝑚/2𝑞−𝑚/2∣ = 2𝑔, so the LHS converges. However, the RHS diverges as 𝛼1𝑡 Ð→
1, which is a contradiction. Therefore, ∣𝛼𝑖 ∣ ≤

√
𝑞, thus completing the proof. □

As a quasimeaningful final meditation, note that intersection theory is a cornerstone
of algebraic topology; the cup product in cohomology is Poincaré dual to the intersection
product, so in some sense, the ring structure on cohomology comes from intersection
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theory. In a similar way as the above proof uses estimates on the intersection number of
various divisors on a surface, much of the theory of Poincaré duality for étale cohomology
is about turning subvarieties into cohomology classes to get a better grasp on intersections
for codimension > 1. To quote the person who got me into algebraic geometry, “motives,
and basically everything, is secretly intersection theory.”
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