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Hochschild homology and topological Hochschild homology are computable invariants

of rings which are of great relevance to the study of algebraic 𝐾-theory. A landmark

computational result in this area is Bökstedt periodicity, which states that THH(F𝑝) is a
polynomial algebra, in constrast to HH(F𝑝) being a divided power algebra. We introduce

both classical and topological Hochschild homology, and give an exposition of this result,

using known computations of the Dyer-Lashof operations on the dual Steenrod Algebra.

This is an end-of-semester report for the Fall 2022 Directed Reading Program, with

Natalie Stewart. No background on Hochschild homology is assumed, although some

familiarity with stable homotopy theory is required for the section on THH. All mistakes

are my own; please reach out to me if you spot anything!

1. Classical Hochschild Homology

To start, we define Hochschild homology over Z and compute HH(F𝑝).

1.1. HochschildHomology and theHKR Isomorphism. Let 𝑅 be an associative, uni-

tal ring. Consider the simplicial ring 𝐵(𝑅)∗ with 𝐵(𝑅)𝑛 B 𝑅⊗Z𝑛+1 and face maps

𝑑𝑖(𝑟0 ⊗⋯⊗ 𝑟𝑛) =
⎧⎪⎪⎨⎪⎪⎩

⋯⊗ 𝑟𝑖𝑟𝑖+1 ⊗⋯⊗ 𝑟𝑛 𝑖 < 𝑛
𝑟𝑛𝑟0 ⊗⋯⊗ 𝑟𝑛−1 𝑖 = 𝑛

.
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Definition 1.1. The Hochschild homology groups of 𝑅, HH∗(𝑅), are the homotopy groups

of this SCR. By Dold-Kan, this is equivalently the homology of the chain complex:

HH(𝑅) = ⋯ Ð→ 𝑅 ⊗Z 𝑅 ⊗Z 𝑅 ⊗Z 𝑅 Ð→ 𝑅 ⊗Z 𝑅 ⊗Z 𝑅 Ð→ 𝑅 ⊗𝑍 𝑅 Ð→ 𝑅,

with differential 𝑑 = ∑𝑛𝑖=0𝑑𝑖 .
Note that if 𝑅 is commutative, then the Hochschild complex HH(𝑅) is associated to a

simplicial commutative ring, giving it the structure of a strict CDGA.
1

One classical source of interest in Hochschild homology comes from its connections to

differential information. Recall the 𝑅-module of absolute differential 1-forms Ω1

𝑅 . This

is characterized by the following universal property. Recall that a derivation on 𝑅 is

a homomorphism from 𝑅 Ð→ 𝑀 , for 𝑀 an 𝑅-module such that the Leibniz rule holds:

𝑑(𝑟𝑠) = 𝑟𝑑(𝑠) + 𝑠𝑑(𝑟). Ω1

𝑅 is the target of the universal derivation 𝑑 ∶𝑅 Ð→ Ω1

𝑅 . This gives a

presentation of Ω1

𝑅 as the free 𝑅-module on symbols𝑑𝑟 for each 𝑟 ∈ 𝑅, modulo the relations

𝑑(1) = 0, 𝑑(𝑟 + 𝑠) = 𝑑𝑟 +𝑑𝑠, 𝑑(𝑟𝑠) = 𝑟𝑑(𝑠) + 𝑠𝑑(𝑟),

with the universal derivation sending 𝑟 to 𝑑𝑟 .

We can extend the module of differential 1-forms to a complex by defining higher dif-

ferential forms as the exterior powers Ω𝑛𝑅 B ⋀𝑛𝑅 Ω1

𝑅 , and using the induced differentials,

organize this into the de Rham complex

Ω0

𝑅 Ð→ Ω1

𝑅 Ð→ Ω2

𝑅 Ð→ ⋯.

Wedge product of forms gives the de Rham complex a CDGA structure [Sta22, 0FKL].

When 𝑅 is commutative, the first Hochschild differential is 0, so we find that HH0(𝑅) =
Ω0

𝑅 = 𝑅. Furthermore, the map

HH1(𝑅) =
𝑅⊗2

im(𝑅⊗3 Ð→ 𝑅⊗2) =
𝑅⊗2

⟨𝑥0𝑥1 ⊗ 𝑥2 − 𝑥0 ⊗ 𝑥1𝑥2 + 𝑥2𝑥0 ⊗ 𝑥1⟩
Ð→ Ω1

𝑅

given by [𝑥⊗𝑦] ↦ 𝑥 𝑑𝑦 is an isomorphism via the obvious inverse; this quotient is precisely

imposing the Liebniz rule. These isomorphisms hint at the following connection between

Hoschchild homology and de Rham cohomology.

Theorem 1.2 (Hochschild-Kostant-Rosenberg). For a commutative ring 𝑅 smooth over Z,

Ω∗𝑅 Ð→ HH∗(𝑅)

is an isomorphism of graded algebras.

Remark 1.3. Note that there is no differential on HH∗(𝑅) corresponding to the de Rham
differential; such an operation can be constructed and is central to the story of negative

cyclic and periodic homology, but is not relevant to what follows. In addition, there is a

derived enhancement of this theorem giving an isomorphism between derived Hoschchild

homology and the de Rham-Witt complex.

1
Here, “strict” means that odd-degree elements square to zero – this is only important over F2 [NK, 2.3].
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1.2. Computing HH(F𝑝). The statements of the previous section are fine so long as 𝑅

is flat over Z. However, when this is not the case, we need to derive everything in sight.

Thus, from here on, we redefine the Hochschild complex as

HH(𝑅) B 𝑅 ⊗𝐿
𝑅⊗𝐿𝑅op

𝑅.

Using the bar resolution of 𝑅 as an 𝑅 − 𝑅 bimodule, it is easy to see that is equivalent to

the previously presented complex for flat rings.

Now, we can compute HH(F𝑝). To start, we can compute F𝑝⊗𝐿 F𝑝 via the flat resolution

Z
𝑝Ð→ ZÐ→ F𝑝,

corresponding to the CDGA Z[𝑡]/𝑡2, with 𝑑𝑡 = 𝑝 and ∣𝑡 ∣ = 1. Tensoring with F𝑝 , we get

F𝑝 ⊗𝐿 F𝑝 ≃ F𝑝[𝑡]/𝑡2 C 𝑆.

From here, we need to resolve F𝑝 as an 𝑆-algebra. One way to do so is by the divided

power CDGA

𝑆 ⟨𝑥⟩ = 𝑆[𝑥1, 𝑥2, . . .]
𝑥𝑖𝑥 𝑗 = (𝑖+ 𝑗𝑖 )𝑥𝑖+ 𝑗

=
F𝑝[𝑡, 𝑥1, 𝑥2, . . .]

𝑡2, 𝑥𝑖𝑥 𝑗 = (𝑖+ 𝑗𝑖 )𝑥𝑖+ 𝑗
, 𝑑𝑥𝑖 = 𝑡𝑥𝑖−1, ∣𝑥𝑖 ∣ = 2𝑖 .

Let us understand this CDGA: a direct computation shows that for 𝑘 > 0

𝑆 ⟨𝑥⟩
2𝑘 = F𝑝 {𝑥𝑘} = F𝑝 {𝑥𝑘1 /𝑘!} , and 𝑆 ⟨𝑥⟩2𝑘+1 = F𝑝 {𝑡𝑥𝑘} = F𝑝 {𝑡𝑥𝑘1 /𝑘!} .

The differential 𝑆 ⟨𝑥⟩
2𝑘 Ð→ 𝑆 ⟨𝑥⟩

2𝑘−1 is an isomorphism, as it sends the generator to the

generator, and the differential coming from odd degrees is zero, as

𝑑(𝑡𝑥𝑘) = 𝑡𝑑(𝑥𝑘) + 𝑥𝑘𝑑(𝑡) = 𝑡2𝑥𝑘−1 + 𝑝𝑥𝑘 = 0.

Therefore, we get a resolution of F𝑝 over 𝑆 . Tensoring with F𝑝 over 𝑆 has the effect of

killing 𝑡 , which collapses everything in even degrees. Thus,

F𝑝 ⊗𝐿𝑆 F𝑝 ≅
F𝑝[𝑥1, 𝑥2, . . .]
𝑥𝑖𝑥 𝑗 = (𝑖+ 𝑗𝑖 )𝑥𝑖+ 𝑗

with zero differentials. We have proved:

Proposition 1.4. The Hochschild homology HH∗(F𝑝) = F𝑝[𝑥, 𝑥2/2!, 𝑥3/3!, . . .] = F𝑝 ⟨𝑥⟩ is
the free divided power algebra on a generator in degree 2.
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2. Topological Hochschild Homology

2.1. Base-Changing to the Sphere. The previous result is a delightful computation, but

there is something unsatisfying about divided power algebras. Stable homotopy theory

tells us that we can seek enlightenment by switching to a deeper base than Z, namely the

sphere spectrum. Thus, identifying discrete (i.e. “classical”) rings with Z-algebras2 in the

symmetric monoidal∞-category of spectra Sp, we can give the following definition:

Definition 2.1. For 𝑅 in Alg(Sp), the topological Hochschild homology of 𝑅 is

THH(𝑅) B 𝑅 ⊗𝑅⊗S𝑅op 𝑅

where the tensor product is taken in Sp. The topological Hochschild homology group
THH∗(𝑅) of 𝑅 are the homotopy groups of this spectrum.

There is a relative version of THH for an 𝑆-algebra 𝑅 given by THH(𝑅/𝑆) = 𝑅⊗𝑅⊗𝑆𝑅op 𝑅;
thus (derived) Hochschild homology is simply HH(𝑅) = THH(𝑅/Z).
In this context, we have a fundamental result of Bökstedt:

Theorem 2.2. There is an isomorphism of algebras THH∗(F𝑝) ≅ F𝑝[𝑥], with ∣𝑥 ∣ = 2.
Thus, as expected, topological Hochschild homology is a much better invariant in char-

acteristic 𝑝 than classical Hochschild homology.

2.2. Proof of Bökstedt Periodicity. A good reference for this section is [KN19] or

[Zha20]. The actual result we will prove is the following.

Theorem 2.3. As an E1-F𝑝-algebra spectrum, THH(F𝑝) is equivalent to F𝑝 ⊗S Σ∞+ Ω𝑆3.
This directly implies Theorem 2.2 as the homology of Ω𝑆3 is the Pontryagin ring, which

is polynomial on a degree 2 generator. This result relies on the following structural result,

equivalent to the Hopkins-Mahowald theorem on the free E2-F𝑝-algebra being F𝑝 .3

Lemma 2.4. As an E2-F𝑝-algebra, the dual Steenrod algebra F𝑝 ⊗S F𝑝 is free on a single
generator in degree 1; it is E2-F𝑝-equivalent to F𝑝 ⊗ Σ∞+ Ω

2𝑆3

To show this, we need the following proposition:

Proposition 2.5. Let 𝑅 be the free E2-F𝑝-algebra on a generator in degree 1. Then

(a) For 𝑝 = 2, 𝜋∗𝑅 = F2[𝑥1, 𝑥2, . . .], with ∣𝑥𝑖 ∣ = 2
𝑖 − 1. The Dyer-Lashof operations are

given by 𝑥𝑖+1 = 𝑄2
𝑖

𝑥𝑖 and 𝛽𝑥𝑖 = 𝑥2𝑖−1.

(b) For 𝑝 > 2, 𝜋∗𝑅 = ⋀F𝑝(𝑦0,𝑦1, . . .) ⊗ F𝑝[𝑧1, 𝑧2, . . .], with ∣𝑦𝑖 ∣ = 2𝑝𝑖 − 1, ∣𝑧𝑖 ∣ = 2𝑝𝑖 − 2, and
Dyer-Lashof operations 𝑦𝑖+1 = 𝑄𝑝

𝑖

𝑦𝑖 and 𝑧𝑖 = 𝛽𝑦𝑖+1.
2
This identification is given by sending a ring 𝑅 to it’s Eilenberg-Mac Lane spectrum, also denoted 𝑅; it is

known that discrete rings are canonically lifted to spectra as E1-Z-algebras. In fact, there is an equivalence

betweenModZ, the category of Z-modules in Sp, and 𝐷(Z).
3
For a great discussion of the equivalence, see [KN19, A].
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Any E2-F𝑝-algebra 𝑅 with 𝜋∗𝑅 satisfying the above is also free on a generator in degree 1.

Proof. Note that the free E2-algebra on 𝑆1 is Ω2𝑆3. Thus,𝐴 = F𝑝⊗Ω2𝑆3, so the computation

is that of the Pontryagin ring of Ω2𝑆3 [KN19, 1.4].

Then, given an 𝑅 as in the last statement and any nontrivial 𝑥1 ∈ 𝜋1𝑅, we get an E2-map

FreeE2(𝑥1) Ð→ 𝑅. The ring structure and Dyer-Lashof operations generate everything from
𝑥1, so as the E2-map preserves these operations, it is an equivalence. □

Thus, Lemma 2.4 reduces to showing that the dual Steenrod algebra F𝑝 ⊗ F𝑝 has the

right ring structure and Dyer-Lashof operations. This is a classical calculation due to

Milnor and Steinberger, respectively [BMMS86, 3.2.2-3.2.3]. With this in hand, the proof

of Theorem 2.3 is direct:

Proof. By Lemma 2.4, we know that F𝑝 is resolvable as an F𝑝 ⊗S F𝑝-module via

F𝑝 ≃ F𝑝 ⊗ Σ∞
+
Ω2𝑆3 ⊗Σ∞

+
Ω2𝑆3 S ≃ (F𝑝 ⊗ F𝑝) ⊗Σ∞

+
Ω2𝑆3 S..

Thus, we have the following equivalences of E1-algebras:

THH(F𝑝) = F𝑝 ⊗F𝑝⊗SF𝑝 F𝑝 ≃ F𝑝 ⊗F𝑝⊗SF𝑝 (F𝑝 ⊗ F𝑝) ⊗Σ∞
+
Ω2𝑆3 S

≃ F𝑝 ⊗Σ∞
+
Ω2𝑆3 S ≃ F𝑝 ⊗ S⊗Σ∞

+
Ω2𝑆3 S

≃ F𝑝 ⊗ Σ∞
+
(∗ ⊗Ω2𝑆3 ∗) ≃ F𝑝 ⊗ Σ∞

+
Ω𝑆3,

giving the desired result. □

As a bonus, this result, along with the machinery of the ring of spherical Witt vectors

associated to a perfect F𝑝-algebra 𝑘 , allows one to deduce the following extension.

Corollary 2.6. For a perfect F𝑝-algebra 𝑘 , we have THH(𝑘) ≅ 𝑘[𝑥], with ∣𝑥 ∣ = 2.
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