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To borrow a phrase, the goal of these notes is to teach tensors as a (component of a)
mathematical lifestyle. A general theme is that even when you a concrete construction
of an object, it takes some playing around to really appreciate it. Time and exposure
will help you believe you understand tensor products, but it’s easier to learn tensors by
understanding their behavior. So, we’ll do lots of examples, and try to not shy away from
using categories to make our lives easier.
All mistakes in these notes are my own. Email me if you spot anything!

1. Universal Properties and “Definitions”

To start, recall the category of vector spaces over a field 𝑘 , which I’ll denote Vect𝑘 . It’ll
be convenient to generalize and consider the category of modules over a (commutative
unital) ring 𝑅, which I’ll denote Mod𝑅 .1 Some examples to keep in mind are Mod𝑘 =
Vect𝑘 , for 𝑘 a field, and ModZ = Ab, the category of abelian groups (you proved this
on a past homework). I won’t spell out a definition of a category or functor or natural
transformation because (a) you know what these are already and (b) you should expect
every nice collection of mathematical objects with a notion of morphisms between objects
to be a category anyway.
To start, here’s a definition you’ve seen in class:

Date: October 25, 2022.
1You might have been told that modules are like badly-behaved vector spaces, but this is a lie. Really, vector
spaces are extremely well-behaved modules. This is why the theory of tensor products over vector spaces is
in some sense really boring.
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Definition 1.1. Let 𝑀,𝑁, 𝐿 be 𝑅-modules. An 𝑅-bilinear map 𝑓 ∶𝑀 × 𝑁 Ð→ 𝐿 is a map
which is 𝑅-linear in each variable separately. Specifically, we have

(a) 𝑓 (𝑚 +𝑚′, 𝑛) = 𝑓 (𝑚,𝑛) + 𝑓 (𝑚′, 𝑛),

(b) 𝑓 (𝑚,𝑛 +𝑛′) = 𝑓 (𝑚,𝑛) + 𝑓 (𝑚,𝑛′),

(c) 𝑓 (𝑚𝑟,𝑛) = 𝑟 𝑓 (𝑚,𝑛) = 𝑓 (𝑚,𝑟𝑛),

for𝑚,𝑚′ ∈𝑀 , 𝑛,𝑛′ ∈ 𝑁 and 𝑟 ∈ 𝑅.

For 𝑀,𝑁, 𝐿 ∈ Mod𝑅 , let Bilin𝑅(𝑀,𝑁 ;𝐿) denote the set of 𝑅-bilinear maps 𝑀 × 𝑁 Ð→ 𝐿.
In particular, postcomposition by maps 𝐿 Ð→ 𝐿′ makes Bilin𝑅(𝑀,𝑁 ;−)∶Mod𝑅 Ð→ Set a
functor from 𝑅-modules to sets. With this in hand, we have the best definition of the
tensor product you’ll ever need.

Definition 1.2. A tensor product 𝑀⊗𝑅𝑁 of𝑀 and 𝑁 as 𝑅-modules represents the functor
Bilin𝑅(𝑀,𝑁 ;−). I.e. it is the “universal” 𝑅-module with a bilinear map𝑀 ×𝑁 Ð→𝑀 ⊗𝑅 𝑁 .

The goal of this section is to unpack that definition. First, a little unbridled abstraction:

Definition 1.3. Let C be a category, and 𝐹 ∶CÐ→ Set a functor. An object 𝑐 ∈ C represents 𝐹
if there exists a natural isomorphism 𝛼 ∶ C(𝑐,−) ≅ 𝐹 , where C(𝑐,−) is the functor sending an
object 𝑑 ∈ C to the set of morphisms 𝑐 Ð→ 𝑑 ∈ C(𝑐,𝑑). We say that this natural isomorphism
expresses the universal property of the object 𝑐 .

What does this mean? It means every map out of 𝑐 corresponds uniquely to some
element of the image of this functor, which we think of as parametrizing sets of things we
care about. For instance, the functor Bilin𝑅(𝑀,𝑁 ;−) records the data of all bilinear maps
out of 𝑀 × 𝑁 . Thus, saying that 𝑀 ⊗𝑅 𝑁 “represents” this functor means that there is a
natural (in 𝐿) isomorphism 𝛼 ∶Hom𝑅(𝑀 ⊗𝑅 𝑁,𝐿) ≅ Bilin𝑅(𝑀,𝑁 ;𝐿), so the tensor product
represents bilinear maps.
This is our first motivation for why tensor products. In general, the functor we’re try-

ing to represent might not be as innocent as Bilin𝑅(𝑀,𝑁 ;−); we might care about much
more involved and intricate data that depends functorially on the objects in our category!
However, if its possible to represent a functor by an object, we’re really in luck – some-
how, we think we “know” more about maps between objects natively to our category of
choice than we know about these weird functors.
Now some desiderata:

Proposition 1.4. Let 𝑐 be a representing object for a functor 𝐹 ∶CÐ→ Set. Recall that means
we have a natural isomorphism 𝛼 ∶ C(𝑐,−) ≅ 𝐹 .

(a) The isomorphism 𝛼 is determined entirely by where it sends the identity on 𝑐 , i.e. the
element 𝑥 B 𝛼𝑐(id𝑐) ∈ 𝐹𝑐 . In particular, the image of 𝑓 ∶𝑐 Ð→ 𝑑 is given by 𝐹(𝑓 )𝑥 ∈ 𝐹𝑑 ,
and ∀𝑦 ∈ 𝐹𝑑 , there exists a unique 𝑓 ∶𝑐 Ð→ 𝑑 such that 𝐹(𝑓 )𝑥 = 𝑦.
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(b) Any two such representing objects are isomorphic via a unique isomorphism.

The first part of this proposition is a form of the Yoneda lemma, which is the most
important triviality in mathematics, and it’s this existence of maps 𝑐 Ð→ 𝑑 corresponding
to elements of 𝐹𝑑 that is usually referred to as a universal property, at least colloquially.

Proof. (a) The Yoneda lemma is really something you should learn about and prove for
yourself, but here’s a basic sketch in the case of interest. The first claim follows from
naturality of the isomorphism 𝛼 applied to the map 𝑓 ∶𝑐 Ð→ 𝑑 , as follows by tracing id𝑐 ∈
C(𝑐, 𝑐) around the naturality square:

C(𝑐, 𝑐) 𝐹𝑐

C(𝑐,𝑑) 𝐹𝑑

𝑓∗ 𝐹 𝑓

𝛼𝑐

𝛼𝑑

Across the bottom composite, we get 1𝑐 Ð→ 𝑓 Ð→ 𝛼𝑑(𝑓 ) ∈ 𝐹𝑑 , but across the top composite
we get 𝐹(𝑓 )(𝛼𝑐(id𝑐)) = 𝐹(𝑓 )𝑥 ∈ 𝐹𝑑 . Commutativity of the diagram tells us that these
must coincide. The second claim follows by a similar argument: existence of the unique
𝑓 ∶𝑐 Ð→ 𝑑 corresponding to 𝑦 ∈ 𝐹𝑑 follows from the isomorphism 𝛼𝑑 ∶ C(𝑐,𝑑) ≅ 𝐹𝑑 , and the
identification 𝐹(𝑓 )𝑥 = 𝑦 comes from a similar diagram chase.

(b) The cleanest proof of this (see [9], 2.4.9) requires some technology I don’t have time
to set up. The basic idea is that if 𝑐, 𝑐 ′ both represent 𝐹 , then there is a composite natural
isomorphism C(𝑐,−) ≅ C(𝑐 ′,−), which by somemore abstract nonsense must come from a
unique isomorphism 𝑐 Ð→ 𝑐 ′ (the uniqueness is forced by requiring compatibility with the
isomorphism to 𝐹 ). □

Let’s specialize to the case of tensor products: by part (b) we know that any possible
construction of a tensor product – i.e. any object which has this universal property of
representing bilinear maps – will yield a uniquely isomorphic end product, which is why
we can speak of the tensor product and pick any construction we want (or find convenient
in a given situation). This is why Defn. 2.2 is an actual definition – to specify an object,
it suffices to specify it up to unique isomorphism. Of course, you need to show that such
an object exists, i.e. to construct it, and that’s what concrete constructions of the tensor
product allow you to do (as well as enabling element-theoretic proofs).
Part (a) is a bit more complicated. First, recall that the action of Bilin𝑅(𝑀,𝑁 ;−) onmaps

of 𝑅-modules 𝑔∶𝐿 Ð→ 𝐿′ is to send a bilinear map 𝐵∶𝑀 × 𝑁 Ð→ 𝐿 to the postcomposition
𝑔∗𝐵 B 𝑔 ○ 𝐵 = 𝑀 × 𝑁 Ð→ 𝐿 Ð→ 𝐿′. Part (a) tells us that the element corresponding to
id∶𝑀 ⊗𝑅 𝑁 Ð→ 𝑀 ⊗𝑅 𝑁 is the “universal bilinear map” ⊗∶𝑀 × 𝑁 Ð→ 𝑀 ⊗𝑅 𝑁 , in the sense
that any bilinear map 𝑓 ∶𝑀 × 𝑁 Ð→ 𝐿 factors uniquely through 𝑀 × 𝑁 Ð→ 𝑀 ⊗𝑅 𝑁 . This is
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usually depicted in the following diagram:

𝑀 ×𝑁 𝑀 ⊗𝑅 𝑁

𝐿
𝑓

⊗

∃! 𝑓 ′

It’s likely this is what you were sold as the “universal property of the tensor product”,
but hopefully it’s clear why there’s something far richer going on.

Problem 1.5. Fix any category C and let 𝑥,𝑦 ∈ C be any two objects. Think through what a
representation of the functor 𝐹(𝑐) = C(𝑥,𝑐) × C(𝑦,𝑐) is, where the product on the right is the
cartesian product in sets. Maybe start by thinking about what the action of 𝐹 on maps 𝑐 Ð→ 𝑑
is. Hint: you’ve definitely seen this concept before.

2. Constructions of a Tensor Product

Anyway, I should probably construct a tensor product. Of course, if I work with vector
spaces and can pick a basis, I can take the tensor product to be the thing with basis given
by the tensors of basis elements, but over a general module I’m not even guaranteed a
basis. But, our universal definition gives us an idea of how to construct it: take the most
general thing we can think of, and impose all the relations (i.e. take a quotient) such that
bilinearity of ⊗ holds. This is where the following construction comes from:

Construction 2.1. Let 𝑀,𝑁 ∈ Mod𝑅 . Define 𝐹 B 𝑅 {𝑚 ⊗𝑛}𝑚∈𝑀,𝑛∈𝑁 to be the free 𝑅-
module on the formal symbols𝑚 ⊗𝑛, and quotient out by the relations

𝑚𝑟 ⊗𝑛 − 𝑟(𝑚 ⊗𝑛)
𝑚 ⊗ 𝑟𝑛 − 𝑟(𝑚 ⊗𝑛)

(𝑚 +𝑚′) ⊗𝑛 − (𝑚 ⊗𝑛 +𝑚′ ⊗𝑛)
𝑚 ⊗ (𝑛 +𝑛′) − (𝑚 ⊗𝑛 +𝑚 ⊗𝑛′),

i.e. let 𝑈 be the submodule of 𝐹 spanned by elements of this form, and take the quotient
𝐹/𝑈 . Then, 𝐹/𝑈 satisfies the universal property of the tensor product.

Problem 2.2. Check this. In particular, show that if 𝑓 ∶𝑀 × 𝑁 Ð→ 𝐿 is a bilinear map,
then there’s a well-defined map 𝑓 ′∶ 𝐹/𝑈 Ð→ 𝐿, and that there’s a “universal bilinear map”
⊗𝑀 ×𝑁 Ð→ 𝐹/𝑈 such that 𝑓 ′ ○ ⊗ = 𝑓 .

This description gives an idea of what elements of the tensor product𝑀 ⊗𝑅 𝑁 look like
– they’re linear combinations of things like𝑚 ⊗𝑛. In fact, we have the following:

Theorem 2.3. Let {𝑥𝑖} and {𝑦 𝑗} be spanning sets of𝑀,𝑁 ∈Mod𝑅 . Then𝑀⊗𝑅𝑁 is spanned
by the elementary tensors 𝑥𝑖 ⊗𝑦 𝑗 .
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Proof. It suffices to show every elementary tensor𝑚⊗𝑛 is a linear combination of 𝑥𝑖⊗𝑦 𝑗 ’s.
Write𝑚 = ∑𝑎𝑖𝑥𝑖 and 𝑛 = ∑𝑏 𝑗𝑦 𝑗 . Then by bilinearity we have

𝑚 ⊗𝑛 = ∑
𝑖

(𝑎𝑖𝑥𝑖 ⊗𝑛) = ∑
𝑖 𝑗

𝑎𝑖𝑏 𝑗(𝑥𝑖 ⊗𝑦 𝑗),

and we are done. □

Corollary 2.4. Let 𝑉 and𝑊 be finite-dimensional vector spaces over a field 𝑘 , and pick
bases {𝑣1, . . . , 𝑣𝑛} and {𝑤1, . . . ,𝑤𝑚}. Then, {𝑣𝑖 ⊗𝑤 𝑗} is a basis for 𝑉 ⊗𝑘 𝑊 ; in particular
dim𝑉 ⊗𝑘𝑊 = dim𝑉 ⋅ dim𝑊 .

Proof. By the previous theorem, ll that needs to be shown is linear independence. So, let
𝑎𝑖 𝑗 ∈ 𝑘 be such that ∑𝑖 𝑗 𝑎𝑖 𝑗𝑣𝑖 ⊗𝑤 𝑗 = 0. To show 𝑎𝑖 𝑗 is zero, define a map

𝜑𝑖 𝑗 ∶𝑉 ⊗𝑘𝑊 Ð→ 𝑘.

which, for 𝑣 = ∑𝑏𝑖𝑣𝑖 and𝑤 = ∑𝑐 𝑗𝑤 𝑗 , maps 𝜑𝑖 𝑗(𝑣⊗𝑤) = 𝑏𝑖𝑐 𝑗 , and extends by linearity; this
is well-defined precisely because {𝑣𝑖} and {𝑤 𝑗} are linearly independent! In particular,
𝜑𝑖 𝑗(𝑣𝑖′ ⊗𝑤 𝑗 ′) = 1 if (𝑖, 𝑗) = (𝑖′, 𝑗 ′) and 0 otherwise. Then, applying 𝜑𝑖 𝑗 to∑𝑖 𝑗 𝑎𝑖 𝑗𝑣𝑖 ⊗𝑤 𝑗 = 0,
we get 𝑎𝑖 𝑗 = 0, so all the 𝑎𝑖 𝑗 must be zero, and we are done. □

This corollary tells us that, in some sense, tensor products of just vector spaces, which
are always finite free, are really boring. That’s why I’m setting this all up for arbitrary
modules, although I could be far more brutally general. Perhaps for another time...
By the way, this proof doesn’t try to divide by coefficients in 𝑘 anywhere, so it’s entirely

valid for free modules over a ring. Note what we did here – instead of defining a map on
a tensor product 𝑉 ⊗𝑘 𝑊 by writing down a bilinear map 𝑉 ×𝑊 , we just define it on
pure tensors and extend by linearity. This is only valid when we’ve checked that the map
we’ve written down, when treated as a map from 𝑉 ×𝑊 , is actually bilinear, but usually
this is either clear or not worth explicitly checking. At the end of the day, everything goes
through the universal property of the tensor product!

3. Examples, Examples, Examples

This is the part where we do examples.

Theorem 3.1. Z/𝑎Z⊗Z Z/𝑏Z ≅ Z/gcd(𝑎,𝑏)Z, for 𝑎,𝑏 ∈ Z.

Proof. We know by Theorem 2.3 that 1 ⊗ 1 spans Z/𝑎Z ⊗Z Z/𝑏Z, and a quick calculation
shows that it’s order is a divisor of both 𝑎 and 𝑏. However, we can do better and give an
explicit isomorphism. Let 𝑓 ∶Z/𝑎Z⊗Z Z/𝑏Z Ð→ Z/gcd(𝑎,𝑏)Z be the map sending 𝑥 ⊗𝑦 to
𝑥𝑦 mod 𝑑 (you should check that multiplication is bilinear – while addition is not – and
that this is well-defined). Furthermore, let 𝑔∶Z/gcd(𝑎,𝑏)Z Ð→ Z/𝑎Z ⊗Z Z/𝑏Z be the map
sending 𝑎 to 𝑎(1⊗1). To see that this is well-defined, use Bezout’s lemma: if 𝑎,𝑏 ∈ Z, then
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there exist integers 𝑥,𝑦 such that 𝑎𝑥 +𝑏𝑦 = gcd(𝑎,𝑏) (equivalently, 𝑎Z+𝑏Z = gcd(𝑎,𝑏)Z).
Now, we need only check that 𝑑 B gcd(𝑎,𝑏) gets sent to 0:

𝑑 ↦ 𝑑(1⊗ 1) = 𝑑 ⊗ 1 = 𝑎𝑥 +𝑏𝑦 ⊗ 1 = 𝑎𝑥 ⊗ 1 +𝑏𝑦 ⊗ 1 = 0 +𝑦 ⊗𝑏 = 0.

Now, you can check that 𝑓 and 𝑔 are inverses:

𝑓 (𝑔(𝑥)) = 𝑓 (𝑥 ⊗ 1) = 𝑥 and 𝑔(𝑓 (𝑥 ⊗𝑦) = 𝑔(𝑥𝑦) = 𝑥𝑦 ⊗ 1 = 𝑥 ⊗𝑦,

thus giving the desired isomorphism. □

This is a generalization of the following theorems:

Theorem 3.2. Let 𝐼 , 𝐽 be ideals of a ring 𝑅. Then 𝑅/𝐼 ⊗𝑅 𝑅/𝐽 ≅ 𝑅/(𝐼 + 𝐽).

Proof. This is exactly the same as before. Define 𝑓 ∶𝑅/𝐼⊗𝑅𝑅/𝐽 Ð→ 𝑅/(𝐼 + 𝐽) as 𝑓 (𝑥⊗𝑦) = 𝑥𝑦
and 𝑔∶𝑅/(𝐼 + 𝐽) Ð→ 𝑅/𝐼 ⊗𝑅 𝑅/𝐽 as 𝑔(𝑥) = 𝑥 ⊗ 1. You need to do some algebra to check that
these are well-defined, but once that’s done, it’s clear that they’re inverses, giving the
desired isomorphism. □

Alternatively, given an ideal 𝐼 ≤ 𝑅 and an 𝑅-module 𝑀 , we can define 𝑀/𝐼𝑀 as the
quotient module of𝑀 by the submodule of the form 𝐼𝑀 = {∑𝑖 𝑎𝑖𝑚𝑖 ∣ 𝑎𝑖 ∈ 𝐼 ,𝑚𝑖 ∈𝑀}, where
the sum is of finitely many nonzero terms.

Theorem 3.3. 𝑅/𝐼 ⊗𝑅 𝑀 ≅𝑀/𝐼𝑀 .

Proof. To write down the map, let 𝑓 ∶𝑅/𝐼 ⊗𝑅 𝑀 Ð→ 𝑀/𝐼𝑀 be given by 𝑓 (𝑎 ⊗𝑚) = 𝑎𝑚.To
define the inverse, let 𝑔′∶𝑀 Ð→ 𝑅/𝐼 ⊗𝑅 𝑀 be defined by 𝑔′(𝑚) = (1 ⊗𝑚). Note this sends
things like 𝑎𝑖𝑚𝑖 , with 𝑎𝑖 ∈ 𝐼 and𝑚𝑖 ∈𝑀 , to 1⊗𝑎𝑖𝑚𝑖 = 𝑎𝑖⊗𝑚𝑖 = 0, so it passes to the quotient
to give a map 𝑔∶𝑀/𝐼𝑀 Ð→ 𝑅/𝐼 ⊗𝑅 𝑀 . You can check these maps are inverses. □

To see why this recovers the previous theorem, take𝑀 = 𝑅/𝐼 and observe that

(𝑅/𝐼)/𝐽(𝑅/𝐼) = (𝑅/𝐼)/(𝐼 + 𝐽 /𝐼) ≅ 𝑅/𝐼 + 𝐽 ,

by the third isomorphism theorem!

Theorem 3.4. Q⊗Z Z ≅ Q and Q⊗Z Z/𝑎Z ≅ 0.

Proof. The first is a direct consequence of Proposition 3.7(d). For the second, we can com-
pute on elementary tensors 𝑥 ⊗𝑦 ∈ Q⊗Z Z/𝑎Z:

𝑥 ⊗𝑦 = 𝑥 ⋅ 𝑎
𝑎
⊗𝑦 = 𝑥

𝑎
⊗ 𝑎𝑦 = 𝑥

𝑎
⊗ 0 = 0.

□
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This says that tensoring with Q turns free abelian groups into Q-vector spaces, and
kills torsion abelian groups. This has tons of ramifications for computational methods in
algebraic topology and algebraic geometry and algebraic number theory!
A fun example which I won’t prove (and you should ponder) is this:

Proposition 3.5. 𝑅[𝑥] ⊗𝑅 𝑅[𝑦] ≅ 𝑅[𝑥,𝑦].
Finally, I want to talk about a very general setup. Let 𝜑 ∶𝑅 Ð→ 𝑆 be a homomorphism of

unital rings. This means that 𝜑(𝑥 + 𝑦) = 𝜑(𝑥) + 𝜑(𝑦), 𝜑(𝑥𝑦) = 𝜑(𝑥)𝜑(𝑦), and 𝜑(1) = 1.
Now, if we have an 𝑆-module 𝑁 , we can consider this as an 𝑅-module, where the 𝑅-scaling
is given by 𝑟 ⋅𝑛 = 𝜑(𝑟)𝑛. Turning an 𝑆-module into an𝑅-module like this is called restriction
of scalars. For example, this is how you can treat a C-vector space as an R-vector space,
by restriction of scalars along the natural embedding R ↪ C.
However, if we start with an 𝑅-module𝑀 , we can also turn this into an 𝑆-module in the

following way: treat 𝑆 as an 𝑅-module via 𝜑 and form the tensor product 𝑆 ⊗𝑅 𝑀 . This
is an 𝑆 module via 𝑠 ⋅ (𝑠 ′ ⊗𝑚) = 𝑠𝑠 ′ ⊗𝑚. In fact, we even have the following “universal
characterization” of this extension of scalars, which is that given an 𝑅-module 𝑀 , an 𝑆-
module 𝑁 , and an 𝑅-linear map 𝑓 ∶𝑀 Ð→ 𝑁 , then this factors uniquely as the embedding
𝑀 Ð→ 𝑆 ⊗𝑅 𝑀 sending𝑚 ↦ 1⊗𝑚 followed by an 𝑆-linear map 𝑓 ′∶𝑆 ⊗𝑅 𝑀 Ð→ 𝑁 .

𝑀 𝑆 ⊗𝑅 𝑀

𝑁

𝑓

𝑚↦1⊗𝑚

𝑓
′

The map 𝑓 ′ is defined by sending 𝑠⊗𝑚 to 𝑠⊗ 𝑓 (𝑚), and then using the 𝑆-module structure
on 𝑁 to send this to 𝑠 𝑓 (𝑚) ∈ 𝑁 . This fact is often expressed as a natural isomorphism

Hom𝑆(𝑆 ⊗𝑅 𝑀,𝑁 ) ≅ Hom𝑅(𝑀,𝑁 ),

called the extension-restriction adjunction, between the extension and restriction functors:

Mod𝑅 Mod𝑆
𝑆⊗𝑅−

restrict

⊣

Proposition 3.6. The following are some examples of extension of scalars:

(a) Complexification: if 𝑉 is an R-vector space, then 𝑉C B 𝑉 ⊗R C is a complex vector
space known as the complexification of R. If {𝑒1, . . . , 𝑒𝑛} is a basis of 𝑉 , then 𝑒𝑖 ⊗ 1
and 𝑒𝑖 ⊗ 𝑖 is a R-basis of𝑉C. However, 𝑒𝑖 ⊗ 1 is a C-basis of𝑉C, as 𝑖(𝑒𝑖 ⊗ 1) = 𝑒𝑖 ⊗ 𝑖 . In
particular, 𝑉C has complex dimension 𝑛, but real dimension 2𝑛.

(b) Polynomial coefficients: for any ring 𝑅, 𝑅[𝑋 ] ≅ 𝑅⊗ZZ[𝑋 ], using that every (commu-
tative unital) ring has a unique map from ZÐ→ 𝑅.
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(c) Reduction of coefficients: if 𝐼 ≤ 𝑅 is an ideal, then 𝑀/𝐼𝑀 ≅ 𝑅/𝐼 ⊗𝑅 𝑀 is the extension
of scalars of𝑀 from Mod𝑅 to Mod𝑅/𝐼 (even though we’re reducing mod 𝐼 ).

Another common use of such things is extending modules over an integral domain to
vector spaces over its fraction field, which can be used to prove that if 𝑅𝑚 ≅ 𝑅𝑛, then𝑚 = 𝑛.
We won’t get into this however. Note also that with complexification, if 𝑉 is a complex
vector space of dimension 𝑛, it can be treated as a real vector space of dimension 2𝑛; if I
complexify that back to a complex vector space, I’ll actually get𝑉 ⊕ 𝑖𝑉 ≅𝑉 ⊗R C, not just
𝑉 , because restriction of scalars forgets about the complex linear structure on 𝑉 .
I want to end with the following list of propositions about how tensor products interact

with other things. In particular, there are no assumptions being made here about the
modules involved, and all of these are natural, in an appropriate sense. I’m not going
to prove them, because (1) great proofs already exist in numerous places in writing and
online and (2) I recommend thinking them over for yourself. The last one, often referred
to as the “tensor-hom adjunction” might show up on pset 11, but the rest boil down to
showing that both of the displayed things represent the same set of bilinear maps!

Proposition 3.7. Let𝑀,𝑁, 𝐿 be 𝑅-modules. There are unique isomorphisms

(a) 𝑀 ⊗𝑅 𝑁 Ð→ 𝑁 ⊗𝑅 𝑀 , with𝑚 ⊗𝑛 ↦ 𝑛 ⊗𝑚,

(b) (𝑀 ⊗𝑅 𝑁 ) ⊗𝑅 𝐿 Ð→𝑀 ⊗𝑅 (𝑁 ⊗𝑅 𝐿) Ð→𝑀 ⊗𝑅 𝑁 ⊗𝑅 𝐿,

(c) ⊕𝑖∈𝐼 (𝑀𝑖 ⊗𝑅 𝑁 ) Ð→ (⊕𝑖∈𝐼 𝑀𝑖) ⊗𝑅 𝑁 , where 𝐼 could be infinite,

(d) 𝑅 ⊗𝑅 𝑀 Ð→𝑀 , with 𝑟 ⊗𝑚 ↦ 𝑟𝑚,

(e) Hom𝑅(𝑀 ⊗𝑅 𝑁,𝐿) ≅ Hom𝑅(𝑀,Hom𝑅(𝑁,𝐿)).

In particular, isomorphism (3) should tell you that the tensor product “distributes” over
direct sum, much like how the product of numbers distributed over addition. In accor-
dance with the principle that an object’s behavior should tell you what it looks like, think
of this as telling you why the tensor product is like a “product” in the first place.2
Finally, here are two isomorphisms that are in some sense special to the case of finite

free modules, e.g. vector spaces.

Proposition 3.8. Let𝑀,𝑁 be𝑅-modules. There is a naturalmap𝜑 ∶𝑀∨⊗𝑅𝑁 Ð→ Hom𝑅(𝑀,𝑁 )
sending ℓ ⊗𝑛 to𝑚 ↦ ℓ(𝑚)𝑛. If𝑀,𝑁 are finite free, this map is an isomorphism.

Proof. It is possible to directly check 𝜑 is injective and surjective. For surjectivity in par-
ticular, you should that if you let {𝑒1, . . . , 𝑒𝑛} be a basis of𝑀 and 𝑓1, . . . , 𝑓𝑚 be a basis of 𝑁 ,
then the image of 𝜑 on the basis {𝑒∨𝑖 ⊗ 𝑓 𝑗} in Hom𝑅(𝑀,𝑁 ) is the matrix with a 1 in the
( 𝑗, 𝑖)’th position and 0’s elsewhere – this is a basis for all𝑚 ×𝑛 matrices! However, given

2The correct statement is that (Mod𝑅,⊗𝑅, 𝑅) is a (closed) symmetric monoidal category, but don’t worry
about what this means – it effectively says that all is well in the world ofMod𝑅 .
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a basis, it is straightforward to write down an inverse map. Let 𝑇 ∈ Hom𝑅(𝑀,𝑁 ) be an
𝑅-linear map, and check that the map

𝜓 ∶𝑇 ↦∑
𝑖

𝑒∨𝑖 ⊗𝑇 (𝑒𝑖)

is an inverse to 𝜑 , using properties of the dual basis. □

Remark 3.9. This isn’t important, but this is true whenever 𝑀 is finitely generated pro-
jective; because Mod𝑅 is closed symmetric monoidal, 𝑀∨ = Hom𝑅(𝑀,𝑅) is always the
categorical dual, not just the algebraic dual, if𝑀 is finitely generated projective; these are
precisely the dualizable objects inMod𝑅 . If𝑀 is f.g. projective, then using it’s splitting as
a summand of a finite free, we can get a “dual generating set” for𝑀∨, which lets us write
down the inverse map. Maybe there’s some connection here to why f.g. projective things
show up and the algebraic 𝐾-theory of 𝑅, but take this with a grain of salt.

Proposition 3.10. Let𝑀,𝑁 be 𝑅-modules. There is a natural map 𝜑 ∶𝑀∨⊗𝑅𝑁 ∨ Ð→ (𝑀⊗𝑅)∨
sending 𝑓 ⊗𝑔 to𝑚 ⊗𝑛 ↦ 𝑓 (𝑚)𝑔(𝑛). If𝑀,𝑁 are finite free, this map is an isomorphism.

Proof. As before, one can pick a basis and write down an inverse in the finite free case.
However, we can also use the previous propositions to string together the isomorphisms

𝑀∨ ⊗𝑅 𝑁 ∨ ≅ Hom𝑅(𝑀,𝑁 ∨) ≅ Hom𝑅(𝑀 ⊗𝑅 𝑁,𝑅) = (𝑀 ⊗𝑅 𝑁 )∨.

Try tracing through the maps here to see that it does what you expect. □

Problem 3.11. Convince yourself that, in principle, using the structure theorem for finitely
generated abelian groups, you now know how to compute all tensor products of such things.

4. Tensor Algebras and Friends

I want to discuss “tensor algebras” and some related constructions, namely symmetric,
exterior, and divided powers. Throughout all of this, we’ll work with (finite-dimensional)
vector spaces over a field 𝑘 , which you should not assume to be characteristic 0. First,
some background:

Definition 4.1. Fix a ring 𝑅. An 𝑅-algebra 𝐴 is one of the following equivalent things:

(1) A ring 𝐴 with a ring homomorphism 𝑓 ∶𝑅 Ð→ 𝐴 such that 𝑓 (𝑅) is contained in the
center of 𝐴; i.e. if I identify 𝑅 with it’s image in 𝐴, then 𝑟𝑎 = 𝑎𝑟 for all 𝑟 ∈ 𝑅,𝑎 ∈ 𝐴,
even if 𝐴 is not commutative.

(2) An 𝑅-module 𝐴 with a unital multiplicative structure, i.e. an 𝑅-linear map 𝜇∶𝐴 ⊗𝑅
𝐴 Ð→ 𝐴 satisfying some axioms. Namely, we require that 𝜇 is associative and unital,
so that writing 𝑥 ⋅𝑦 = 𝜇(𝑥,𝑦), we have 𝑥 ⋅ (𝑦 ⋅ 𝑧) = (𝑥 ⋅𝑦) ⋅ 𝑧 and 1 ⋅ 𝑥 = 𝑥 ⋅ 1 = 𝑥 .

In both cases, you can think of 𝑅 as the “scalars” of 𝐴.
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Some examples of an R-algebra are the algebra of 𝑛×𝑛 matrices,𝑀𝑛(R), as matrices can
be added and scaled, but also multiplied, or the polynomial algebra R[𝑥], as polynomials
can be multiplied. In fact, R[𝑥] is a commutative R-algebra; i.e. it is a commutative ring,
or via definition 4.1.(2), we have 𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥 for all 𝑥,𝑦 ∈ 𝐴. An important case to keep
in mind is that Z-algebras are the same as associative rings, and commutative Z-algebras
are the same as commutative rings.

Definition 4.2. Let𝑉 ∈ Vect𝑓 𝑑
𝑘

be a finite-dimensional 𝑘-vector space. The tensor algebra
on 𝑉 is the free associative 𝑘-algebra on 𝑉 . In particular, letting 𝑉⊗𝑛 be the 𝑛-fold tensor
product of 𝑉 , where 𝑉⊗0 = 𝑘 , the tensor algebra is, as a vector space,

𝑇𝑉 B⊕
𝑛≥0
𝑉⊗𝑛 .

The algebra structure comes from the bilinear pairing 𝑉⊗𝑛 ⊗𝑘 𝑉⊗𝑚 Ð→𝑉⊗(𝑛+𝑚) sending

(𝑣1 ⊗ . . . ⊗ 𝑣𝑛) ⊗ (𝑤1 ⊗ . . . ⊗𝑤𝑚) ↦ 𝑣1 ⊗ . . . ⊗ 𝑣𝑛 ⊗𝑤1 ⊗ . . . ⊗𝑤𝑚 .

Note that this is a noncommutative algebra in general. If 𝑒1, 𝑒2, , 𝑒3 is a basis of 𝑉 , then
an example element in 𝑇𝑉 looks like (2𝑒1 + 𝑒2) ⊗ 𝑒3 + 𝑒1 ⊗ 𝑒2 ⊗ 𝑒3 + 𝑒2 ⊗ 𝑒1 ⊗ 𝑒3, etc. It’s
worth pointing out that this is a graded algebra, which means that (1) it decomposes into a
direct sum of pieces of different gradings, which in this case are the pieces𝑉⊗𝑛, i.e. length
𝑛 tensors, and (2) addition and multiplication respect the grading, which really means that
the product of something in degree 𝑛 and degree𝑚 lives in degree 𝑛 +𝑚.
This might seem like a big and unwieldy object, but it has some nice properties. In

particular, it’s the universal associative algebra on 𝑉 , which means that if 𝑓 ∶𝑉 Ð→ 𝐴 is
any 𝑘-linear map from𝑉 to an associative algebra 𝐴, then it extends to an 𝑘-algebra map
𝑇𝑉 Ð→ 𝐴 which factors the inclusion of 𝑉 =𝑉⊗1 ↪𝑇𝑉 as the degree 1 component.

With this in mind, the symmetric algebra is a natural thing to define next: see if you can
guess what I’m going to say.

Definition 4.3. The symmetric algebra on𝑉 is the free commutative 𝑘-algebra on𝑉 . The
graded components are written Sym𝑑(𝑉 ) ⊂𝑉⊗𝑑 , and are called the𝑑-th symmetric powers
of𝑉 . This is the quotient of𝑉⊗𝑑 by all commutators, i.e. symbols of the form 𝑣⊗𝑤 −𝑤⊗𝑣 .
The whole algebra is

Sym𝑉 B⊕
𝑛≥0

Sym𝑑(𝑉 ).

The algebra structure comes from the concatenation pairing Sym𝑛𝑉⊗𝑘Sym𝑚𝑉 Ð→ Sym𝑛+𝑚𝑉 .

I want to emphasize that the symmetric algebra is a quotient algebra, not a subspace
algebra. Fulton-Harris, the representation theory book you’ll read this November, likes to
conflate the two because basically everything happens in characteristic zero, but this will
mess up your intuitions.
A good exercise is to spell out what the universal property of the symmetric algebra

on 𝑉 actually is, in terms of maps from 𝑉 to a commutative 𝑘-algebra. More concretely,
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however, Sym is like a basis-free polynomial algebra. In particular, if 𝑉 has dimension 𝑛,
then choosing a basis 𝑒1, . . . , 𝑒𝑛 of 𝑉 , we get an isomorphism of commutative algebras

Sym𝑉 ≅ 𝑘[𝑒1, . . . , 𝑒𝑛],

where the𝑑-th graded pieces on the left correspond to homogenous polynomials of degree
𝑑 on the right. Note that by our conventions, Sym𝑘 ≅ 𝑘[𝑥] and Sym0 ≅ 𝑘 ; that last one
says that a polynomial 𝑘-algebra on 0 variables is just your ground field.
One way to describe Sym𝑑𝑉 is that there is an action of Σ𝑑 ↷𝑉⊗𝑑 given by permuting

factors. An element of Sym𝑑𝑉 then is an orbit of this action, i.e. we identify two tensors
which are related by a permutation. Now the dual concept to orbits are fixed points, so
we might ask what the fixed points are.

Definition 4.4. The divided power Γ𝑑𝑉 is the subspace of symmetric tensors in 𝑉⊗𝑑 , i.e.
fixed points of the Σ𝑑 action.

The algebra structure with this is quite involved, so I won’t get into it. You might see
these things come up honestly if you ever read about crystalline cohomology, but literally
do not worry about that. The important thing is that while we can give a basis for Sym𝑑𝑉

by taking degree 𝑑 monomials in 𝑒1, . . . , 𝑒𝑛, a basis for Γ𝑑𝑉 comes by considering, for
𝑎1 + . . . + 𝑎𝑛 = 𝑑 , the divided power monomials

𝑒
(𝑎1)
1 ⋯𝑒(𝑎𝑛)𝑛 = ∑

𝜎∈Σ𝑑
𝜎 ⋅ 𝑒⊗𝑎11 ⊗⋯𝑒⊗𝑎𝑛𝑛 .

A combinatorics argument (count the number of ways to put 𝑑 unlabeled balls into 𝑛
boxes) tells us that

dimSym𝑑𝑉 = dim Γ𝑑𝑉 = (𝑛 +𝑑 − 1
𝑑

).

Now, there’s a natural map 𝛼 ∶ Γ𝑑𝑉 Ð→ Sym𝑑𝑉 given by including into 𝑉⊗𝑑 and projecting
down to Sym𝑑𝑉 , which is defined elementwise on a basis as

𝛼 ∶𝑒(𝑎1)1 ⋯𝑒(𝑎𝑛)𝑛 ↦ 𝑑!
𝑎1!⋯𝑎𝑛!

𝑒𝑎11 ⋯𝑒𝑎𝑛𝑛 .

This is invertible when the coefficients 𝑑! are invertible, so in particular when char 𝑘 = 0
or char 𝑘 > 𝑑 . Otherwise, it is neither injective or surjective in general. The natural map
in the other direction is often called the norm map, which is usually given for any group
action from orbits to fixed points (or as is usually stated, from coinvariants to invariants):

𝛽 ∶Sym𝑑𝑉 Ð→ Γ𝑑𝑉

𝑣1⋯𝑣𝑑 z→
1
𝑑! ∑𝜎∈Σ𝑑

𝑣𝜎(1)⋯𝑣𝜎(𝑑).

To see when this map is not an isomorphism, consider what happens over F2; here, the
image of 𝑥 ⊗𝑦 +𝑦 ⊗ 𝑥 under 𝛼 is 2𝑥𝑦 = 0.
The final character I want to introduce is the exterior algebra.
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Definition 4.5. The 𝑑-th exterior power ⋀𝑑𝑉 is the quotient of 𝑉⊗𝑑 by elements of the
form 𝑣 ⊗𝑤 +𝑤 ⊗ 𝑣 . Writing the image of 𝑣 ⊗𝑤 as 𝑣 ∧𝑤 , or “𝑣 wedge product𝑤”, we have
𝑣 ∧𝑤 = −𝑤 ∧ 𝑣 , which implies (when char 𝑘 ≠ 2) that 𝑣 ∧ 𝑣 = 0. The exterior algebra is the
free alternating graded 𝑘-algebra, i.e. is given by

⋀𝑉 B⊕
𝑑≥0

𝑑

⋀𝑉 .

This is an algebra under wedge product.
Now, we can again cook up a basis by some combinatorics. You should check via

symbol-pushing that if 𝑣1 ∧ . . . ∧ 𝑣𝑑 is an element of ⋀𝑑𝑉 with any 𝑣𝑖 = 𝑣 𝑗 for 𝑖 ≠ 𝑗 ,
then 𝑣1 ∧ . . . ∧ 𝑣𝑑 = 0, and because reordering just introduces a sign, we can always put
elements into a canonical order. Thus, if 𝑒1, . . . , 𝑒𝑛 is a basis of 𝑉 , then a basis for ⋀𝑑𝑉 is
given by wedges of the form 𝑒𝑖1 ∧ . . . ∧ 𝑒𝑖𝑑 , for 1 ≤ 𝑖1 < . . . < 𝑖𝑑 ≤ 𝑛. Thus, we have that

dim
𝑑

⋀𝑉 = (
𝑛

𝑑
) if 𝑑 < 𝑛, and 0 otherwise.

Thus, while Sym𝑉 is infinite dimensional, dim⋀𝑉 = 2𝑛, and dim⋀𝑛𝑉 = 1. However, there
is famously no canonical isomorphism from ⋀𝑛𝑉 to 𝑘 ; any such isomorphism requires
a basis to define. By the way, we can extend maps of vector spaces to maps of tensor
products of vector spaces, by acting separately in each variable. This passes to quotients,
so we can define the exterior power of a linear map 𝑓 ∶𝑉 Ð→𝑊 as

𝑓 ∧𝑑 ∶
𝑑

⋀𝑉 Ð→
𝑑

⋀𝑊
𝑣1 ∧ . . . ∧ 𝑣𝑑 z→ 𝑓 (𝑣1) ∧ . . . ∧ 𝑓 (𝑣𝑑).

Because ⋀𝑛𝑉 ≅ 𝑘 (noncanonically), this means that if 𝑓 is an endomorphism of 𝑉 , then
𝑓 ∧𝑛 is given by multiplication by a scalar. This is the determinant of 𝑓 .
Also, while bilinear forms, i.e. Bilin𝑘(𝑉 ,𝑉 ;𝑘) = Hom𝑘(𝑉 ⊗𝑉 ,𝑘) = (𝑉 ⊗𝑉 )∨ decompose

naturally into symmetric and skew-symmetric forms (for 𝑉 finite dimensional), this isn’t
true for 𝑘-forms, i.e. elements of (𝑉⊗𝑘)∨. The fundamental reason comes down to the
representation theory of Σ𝑘 , but a quick sanity check is that for 𝑑 = 2,

dim𝑉⊗2 = dimSym2𝑉 + dim
2
⋀𝑉 .

Two facts which I won’t prove are the following isomorphisms. They won’t be useful
immediately, but you should ponder them all the same. The nicest proofs involve using
the notion of a perfect pairing, which you should google.
Theorem 4.6. Let 𝑉 be a finite dimensional vector space and 𝑑 ≥ 1. There are canonical
isomorphisms

(Sym𝑑𝑉 )∨ ≅ Γ𝑑(𝑉 ∨) and
𝑑

⋀(𝑉 ∨) ≅ (
𝑑

⋀𝑉)
∨

,

the left one when char 𝑘 > 𝑑 .
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5. Dimension and Trace

Here’s some additional cool things that come naturally out of the theory of tensor prod-
ucts. I want to shout out Keeley Hoek’s linear algebra notes [7] for being an absolutely
amazing presentation of this material.
Fix C a closed symmetric monoidal category. There’s a formal definition of this in terms

of some axioms and commutative diagrams, but here’s the key idea. The data of such a
thing is a category C, bifunctors3 − ⊗ −∶ C × C → C and Hom(−,−)∶ Cop × C → C, called the
“tensor” and “internal hom,” and a distinguished object 1 ∈ C called the unit. These satisfy:

(a) ⊗ is an associative product and 1 is its unit. This means that 𝑋 ⊗𝑌 ⊗𝑍 ≅ 𝑋 ⊗(𝑌 ⊗
𝑍) ≅ (𝑋 ⊗ 𝑌) ⊗ 𝑍 , all via specified isomorphisms, and 𝑋 ≅ 1 ⊗ 𝑋 ≅ 𝑋 ⊗ 1. These
isomorphisms are also required to be natural and “nice” in some technical ways.

(b) ⊗ is a symmetric product – i.e. there are natural isomorphisms 𝑋 ⊗𝑌 ≅ 𝑌 ⊗𝑋 .

(c) The internal hom is right adjoint to the tensor – this means that for all objects
𝑋,𝑌,𝑍 ∈ C, there is a natural isomorphism (of sets)

MorC(𝑋 ⊗𝑌,𝑍) ≅MorC(𝑋,Hom(𝑌 ⊗𝑍))

(which is currying), and this internalizes to an isomorphism in C as

Hom(𝑋 ⊗𝑌,𝑍) ≅ Hom(𝑋,Hom(𝑌,𝑍)).

(d) By some abstract nonsense, this implies that ⊗ preserves “colimits” separately in
each variable. Practically speaking, this means it preserves (1) coproducts, i.e. di-
rect sums, and (2) cokernels, i.e. quotients.

Now, here’s your favorite example of a closed symmetric monoidal category: Mod𝑅 .
The tensor is −⊗𝑅 −, the unit is 𝑅, and the internal hom is Hom𝑅(−,−), which is itself an
𝑅-module. We mentioned that ⊗𝑅 distributes over direct sums, but it’s also true that if

𝑀
𝑓Ð→ 𝑁

𝑔Ð→ 𝐿 Ð→ 0

is an exact sequence, i.e.

𝐿 ≅ 𝑁

im(𝑓 ∶𝑀 Ð→ 𝑁 ),

then for any 𝑃 ∈Mod𝑅 , we get an exact sequence

𝑀 ⊗𝑅 𝑃
𝑓⊗id𝑃ÐÐÐ→ 𝑁 ⊗𝑅 𝑃

𝑔⊗id𝑃ÐÐÐ→ 𝐿 ⊗𝑅 𝑃 Ð→ 0.

3That is, if you fix one of the inputs, you get a functor in the other input; also the notation Cop means that
Hom(−,−) is contravariant in the first variable.
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This is what it means to “preserve cokernels”, and actually lets us compute things like
Z/2Z⊗Z 𝑃 in a neat way. In this case, we can write Z/2Z in the following exact sequence

Z 2Ð→ ZÐ→ Z/2ZÐ→ 0.

Then, tensoring with 𝑃 and applying the natural isomorphism Z ⊗Z 𝑃 ≅ 𝑃 (under this
isomorphism, 2⊗ id𝑃 gets sent to the map of multiplication by 2 on 𝑃 ), we get

𝑃
2Ð→ 𝑃 Ð→ Z/2Z⊗Z 𝑃 Ð→ 0.

Thus, we get that

Z/2Z⊗Z 𝑃 ≅
𝑃

{2𝑥 ∣𝑥 ∈ 𝑃} = 𝑃/2𝑃 .

Anyway, being closed symmetricmonoidal is a fancyway of saying that you have some-
thing that behaves like a tensor product, and if I was a mean person, I could make this
entire talk 1 sentence by saying that “Vect𝑘 is a closed symmetric monoidal category under
the tensor product” and just leaving. The point of this is to define a dualizable object.

Definition 5.1. Fix a closed symmetric monoidal category C. An object𝑋 ∈ C is dualizable
if there exists a “dual” 𝑋∨ ∈ C and maps 𝜂∶ 1 Ð→ 𝑋∨ ⊗𝑋 (the “unit” or “coevaluation”) and
𝜖 ∶𝑋 ⊗𝑋∨ Ð→ 1 (the “counit” or “evaluation”) such that the following diagrams commute:

𝑉 ≅𝑉 ⊗ 1 𝑉 ⊗𝑉 ∨ ⊗𝑉 𝑉 ∨ ≅ 1⊗𝑉 ∨ 𝑉 ∨ ⊗𝑉 ⊗𝑉 ∨

𝑉 ≅ 1⊗𝑉 𝑉 ∨ ≅𝑉 ∨ ⊗ 1

𝜂⊗1id⊗𝜂

𝜖⊗1 1⊗𝜖
id𝑉∨id𝑉

These diagrams are often called the “triangle identities.”

Some consequences of this are natural isomorphisms for any dualizable 𝑋 and objects
𝑌,𝑍 ∈ C given as

Hom(𝑋 ⊗𝑌,𝑍) ≅ Hom(𝑌,𝑋∨ ⊗𝑍) and Hom(𝑋∨ ⊗𝑌,𝑍) ≅ Hom(𝑌,𝑋 ⊗𝑍).

The first isomorphism is given by taking a map 𝑓 ∶𝑋 ⊗𝑌 Ð→ 𝑍 , and mapping this to

𝑓 ∶𝑌 ≅ 1⊗𝑌 𝜂⊗id𝑌ÐÐÐ→ 𝑋∨ ⊗𝑋 ⊗𝑌
id𝑋∨ ⊗𝑓ÐÐÐÐ→ 𝑋∨ ⊗𝑍 .

I’ll leave it as an exercise to define the rest of the maps here.
Themost important example of a dualizable object is afinite-dimensional vector space𝑉 .

In general, the “algebraic dual” of an object 𝑃 in a closed symmetric monoidal category is
defined to be 𝑃∨ B Hom(𝑃, 1), but this is often not a categorical dual. We can check these
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axioms for 𝑉 and 𝑉 ∨ however. Fix a basis 𝑒1, . . . , 𝑒𝑛 of 𝑉 , and let 𝑒∗𝑖 be the corresponding
dual basis. The evaluation map is

𝜖 ∶𝑉 ⊗𝑉 ∨ Ð→ 𝑘
𝑣 ⊗ ℓ z→ ℓ(𝑣).

and the unit map is

𝜂∶𝑘 Ð→𝑉 ∨ ⊗𝑉

1z→
𝑛

∑
𝑖=1
𝑒∗𝑖 ⊗ 𝑒𝑖 .

In particular, we need finite dimensionality of 𝑉 for the sum on the right to be well-
defined. You should write out what the triangle identities look like – because of this
well-definedness issue, 𝑉 ∨ isn’t a categorical dual if 𝑉 is infinite-dimensional.
The general intuition of dualizability is that of “finiteness” – specifically, an object is

dualizable if its size is smaller than the “additivity” of the latent category. By the way, du-
alizable objects inMod𝑅 are precisely finitely generated projective modules, which means
a module 𝑃 such that there is a surjection 𝑟 ∶𝑅𝑛 Ð→ 𝑃 which is split by a map 𝑠 ∶𝑃 Ð→ 𝑅𝑛 such
that 𝑟𝑠 = 1𝑃 (but maybe not 𝑠𝑟 = 1𝑅𝑛 ). This means that 𝑃 is a submodule of a finite free
module. Because over a field (or at least a PID) submodules of free modules are free, we
know that the dualizable objects in Mod𝑘 = Vect𝑘 are precisely finite dimensional vector
spaces. Really this is getting too far into Math 221 and Math 225 material though; email
me if you want some more details on this, or see [12].4
The immediate payoff of all of this is an even better abstract definition of the trace,

which applies for endomorphisms of a dualizable object in any closed symmetricmonoidal
category. Let 𝑓 ∶𝑉 Ð→𝑉 be an endomorphism of a dualizable object 𝑉 . Then, we can form
the following composite:

tr(𝑓 ) B 1
𝜂Ð→𝑉 ∨ ⊗𝑉

id𝑉∨ ⊗𝑓ÐÐÐÐ→𝑉 ∨ ⊗𝑉 ≅𝑉 ⊗𝑉 ∨ 𝜖Ð→ 1.

This is the trace of 𝑓 . In many cases, this map is given by multiplication by some scalar,
which is also called the trace.

4It’s also worth pointing out that any dualizable object supports an isomorphism as in Proposition 3.8: all
we need is the mate isomorphisms mentioned above. Take any other object𝑊 ∈ C, and do

Hom(𝑉 ,𝑊 ) ≅ Hom(1⊗𝑉 ,𝑊 ) ≅ Hom(1,𝑉 ∨ ⊗𝑊 ) ≅ 𝑉 ∨ ⊗𝑊 .

The last isomorphism is something you should expect from the fact that 𝑅-linear maps into a module𝑀 are
in bijection with 𝑀 ; i.e. Hom𝑅(𝑅,𝑀) ≅ 𝑀 , via evaluating at 1. Thanks to Natalie Stewart for pointing out
this argument to me.

15



Let’s work this out for the case of an endomorphism 𝑇 of a finite-dimensional vector
space 𝑉 . Let {𝑒𝑖} be a basis of 𝑉 , and {𝑒∗𝑖 } be the dual basis. We have the following:

𝑘 𝑉 ∨ ⊗𝑘 𝑉 𝑉 ∨ ⊗𝑘 𝑉 𝑉 ⊗𝑘 𝑉 ∨ 𝑘

1 ∑𝑖 𝑒∗𝑖 ⊗ 𝑒𝑖 ∑𝑖 𝑒∗𝑖 ⊗ 𝑓 (𝑒𝑖) ∑𝑖 𝑓 (𝑒𝑖) ⊗ 𝑒∗𝑖 ∑𝑖 𝑒∗𝑖 (𝑓 (𝑒𝑖))

𝜖𝜂 id⊗𝑓

So, tr(𝑓 ) = ∑𝑖 𝑒∗𝑖 (𝑓 (𝑒𝑖)). What is this? Well, 𝑓 (𝑒𝑖) is the image of the 𝑖-th basis vector,
and taking 𝑒∗𝑖 of this pulls out the 𝑖-th component of the image of the 𝑖-th basis vector.
This is effectively how much 𝑓 scales 𝑒𝑖 along it’s span, and if we were to write 𝑓 as a
matrix with respect to {𝑒𝑖}, this would be the 𝑖-th diagonal entry. Summing over these is
precisely the usual definition of the trace! You can also check that this is what you get via
the more pedestrian definition using the isomorphism 𝑉 ∨ ⊗𝑘𝑊 ≅ Hom(𝑉 ,𝑊 ); the map
back gets you to the third thing in this diagram, and then you apply the evaluation map
(which in this context is often called contraction).
With that, here’s the coolest and perhaps most useful definition of the dimension of a

vector space you’ll ever see.

Definition 5.2. Let 𝑉 be a dualizable 𝑘-vector space. Then dim𝑘𝑉 B tr(id𝑉 ).
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