
AN OPINIONATED INTRODUCTION TO STOCHASTIC LOCALIZATION

RUSHIL MALLARAPU

Abstract. Stochastic localization is a technique at the intersection of high-dimensional prob-
ability theory and stochastic process theory which aims to understand complicated high-
dimensional distributions by evolving them in a controlled way. This notion, which dates back to
the 1970s, is both general, and in certain cases of interest, very amenable to direct analysis and
simulation. In this paper, we will introduce this notion, familiarize ourselves with the basics of
this analysis, and conclude by presenting a application of stochastic localization to constructing
low-entropy decompositions of probability measures, inspired by information theory.
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1. Introduction: What is Stochastic Localization

Suppose we are given a probability measure 𝜇 on a high-dimensional space, like 𝐑𝑛. Often-
times, in statistical physics or machine learning, these are complicated or otherwise opaque
distributions we want to understand better. Stochastic localization, broadly construed, is a
controlled way of deforming such measures by localizing them at a point.

Definition 1.1. A stochastic localization of 𝜇 is a probability measure-valued stochastic process
(𝜇𝑡)𝑡≥0 with 𝜇0 = 𝜇 such that

1. 𝜇𝑡 ⇒ 𝛿𝐱∗ for a (random) 𝐱∗ ∈ 𝐑𝑛, i.e. the process localizes;
2. (𝜇𝑡)𝑡≥0 is a martingale.

The latter means that 𝜇𝑡(𝐴) is a martingale for all measurable 𝐴 ⊂ 𝐑𝑛, or equivalently, that
𝐄𝐱∼𝜇𝑡[𝑓(𝑥)] is a martingale for all bounded continuous 𝑓 ∈ 𝐶𝑏(𝐑𝑛).

To motivate this definition, consider the following computation: let (𝜇𝑡) a stochastic localiza-
tion of 𝜇. Weak convergence says for any bounded continuous 𝑓 ∈ 𝐶𝑏(𝐑𝑛),

∫𝑓(𝐱) 𝜇𝑡(d𝐱) → ∫𝑓(𝐱) 𝛿𝐱∗(d𝐱) = 𝑓(𝐱∗),
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so by bounded convergence, we have

𝐄[∫𝑓(𝐱) 𝜇𝑡(d𝐱)] → 𝐄[𝑓(𝐱∗)].

However, the martingale condition implies the expectation on the left is constant for all 𝑡, and
in particular is equal to ∫𝑓(𝐱)𝜇(d𝐱), as 𝜇 is a deterministic measure. Thus,

∫𝑓(𝐱) 𝜇(d𝐱) = 𝐄[𝑓(𝐱∗)] for all 𝑓 ∈ 𝐶𝑏(𝐑𝑛).

That is, 𝐱∗ is distributed as a random sample from 𝜇.

Example 1.2 (Coordinate-by-coordinate localization). Suppose 𝜇 is supported on the vertices
of the hypercube {−1, +1}𝑛. Pick 𝑋 ∼ 𝜇 and, independently, a uniformly random permutation
(𝑘1,… , 𝑘𝑛) of 1,… , 𝑛. Then, the process

𝜇𝑗(⋅) ≔ 𝜇(𝑋 ∈ ⋅ ∣ 𝑋𝑘1,… , 𝑋𝑘𝑗),

i.e. the conditional distribution of 𝑋 given 𝑋𝑘1,… , 𝑋𝑘𝑗, is a stochastic localization of 𝜇. It is a
martingale by the conditional version of Adam’s law, i.e. the tower law for non-Harvard trained
readers, and it localizes as for 𝑗 ≥ 𝑛, we have conditioned on all the information about where 𝑋
is. Visually, we can imagine at each integer time step bisecting the hypercube along a randomly
chosen axis, pushing all the mass to one side or another – eventually, the mass will be localized
on a single point. This localization scheme, while simple, has applications towards analysis of
Gibbs sampling [CE22].

Example 1.3 (Isotropic Gaussian localization). We return to a general 𝜇; let 𝐱 ∼ 𝜇 and 𝐵𝑡 be
an independent 𝑛-dimensional Brownian motion started from 0. Define

𝐲𝑡 ≔ 𝑡𝐱 + 𝐵𝑡

and let
𝜇𝑡(⋅) ≔ 𝜇(𝐱 ∈ ⋅ ∣ 𝐲𝑡).

This is also a stochastic localization. It is a martingale for the same reason as above, and as
𝑡, which we can interpret as a signal-to-noise ratio, increases, the relative contribution of the
Gaussian noise decreases, so 𝐲𝑡 ≈ 𝑡𝐱 [Mon23, §1.3].

Why might one care about stochastic localization? There are two (overlapping) motivations I
find worth considering:

1. (High-dimensional geometry) Within the context of convex geometry, there is a notion
of “localization,” which reduces high-dimensional inequalities to 1-dimensional ones
to prove statements about isoperimetric or concentration phenomena. Very roughly,
the idea is to pick a line, or “needle” running through a given convex body and project
along it, and many approaches towards milestone conjectures in this area, such as the
Kannan-Lovász-Simonovitz conjecture, rely on being able to show “most” needles have
good isoperimetry [LV18, §3.3]. One use of stochastic localization is to globalize this
process, localizing a given measure along a randomly chosen needle, and establishing
isoperimetric inequalities by showing that for small times, the isoperimetry along this
process improves without shrinking the variance too much [Eld13].
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2. (Sampling algorithms) As we saw, stochastic localization lets us push all the mass of
a complicated measure onto a random sample from that measure. Thus, if we can
efficiently simulate a stochastic localization scheme, we get a sampling algorithm for
an otherwise intractible sampling problem. As we’ll see, the success of such methods
depend on the specific choice of localization scheme, but this idea has already been
used to great effect in [EMS24].

We’ll see soon that both of these applications have information-theoretic motivations; one
might interpret certain stochastic localization schemes as a way of decomposing a measure
into a simple mixture of simpler measures.
The remainder of this paper has two goals. First, we will discuss the abstract theory of sto-

chastic localizations in more detail, unpacking the historical connection between localizations
and “non-linear filters.” We will also expand Example 1.3 to a natural and broadly applicable
family of localization schemes, characterizable by an explicit SDE. Second, we will return to
the question of low-entropy decompositions, and, following [AM21], prove a theorem of Eldan
on the behavior of a stochastic localization-inspired decomposition [Eld19].

2. Observation Processes and the Localization SDE

To start, notice how in Examples 1.2 and 1.3, our stochastic localizations were constructed
by sampling 𝑋 ∼ 𝜇 and conditioning on a sequence of random variables that grew more
“informative” about 𝑋 as 𝑡 → ∞. This idea of localizing a measure by conditioning on more
data has natural information-theoretic interpretations, which is formalized by the notion of
observation processes [Mon23, §3].
In this section, we introduce observation processes, and then discuss the linear-tilt localization

SDE, which provides both a theoretical guarantee that certain classes of localizations exist and
are tractable as well as an alternative (and often more practical) method of simulating them.
This is meant to be an overview of what (in the author’s opinion) are the key fundamentals
behind stochastic localization in the literature, and readers familiar with the idea should instead
skip ahead to section Section 3.

2.1. Observation Processes.

Definition 2.1. Given 𝐱 ∼ 𝜇, a random process (𝐲𝑡)𝑡≥0 is an observation process for 𝐱 if
1. for each sequence 𝑡1 < ⋯ < 𝑡𝑘, 𝐱, 𝐲𝑡𝑘,… , 𝐲𝑡1 forms a Markov chain, i.e. the process gets
more informative over time;

2. given a measurable 𝐴 ⊂ 𝐑𝑛,
𝜇∞(𝐴) ≔ 𝜇(𝐱 ∈ 𝐴 ∣ 𝐲𝑡, 𝑡 ≥ 0) ∈ {0, 1},

i.e. the process gives complete information about 𝐱.
The associated stochastic localization scheme is given by

𝜇𝑡(⋅) ≔ 𝜇(𝐱 ∈ ⋅ ∣ 𝐲𝑡).

One way of interpreting the first condition in Definition 2.1 is to realize that asking
𝐏(𝐲𝑡𝑖 ∈ ⋅ ∣ 𝐲𝑡𝑖+1,… , 𝐲𝑘, 𝐱) = 𝐏(𝐲𝑡𝑖 ∈ ⋅ ∣ 𝐲𝑡𝑖+1)

means requiring 𝑦𝑡𝑖 to contain no additional information about 𝐱 other than what was known
from 𝐲𝑡𝑖+1. In particular,

𝜇(𝐱 ∈ ⋅ ∣ 𝐲𝑡𝑘,… , 𝐲𝑡1) = 𝜇(𝐱 ∈ ⋅ ∣ 𝐲𝑡𝑘) = 𝜇𝑡𝑘(⋅),
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by Bayes’ rule. This notion of “ordering by physical degradation” has existed for some time in
the context of information theory, and some of the earliest work on what we now call stochastic
localization came from considering observation processes for non-linear filtering problems
[Ber73; FKK72]. Of course, the second condition ensures that the localization scheme thus
constructed fulfils condition 1. of Definition 1.1.

Remark 2.2. In [CE22], the authors consider stochastic localization schemes given by sampling
𝐱 ∼ 𝜇 and conditioning on a filtrationℱ𝑡 which is precise, in that⋃ℱ𝑡 = 𝜎(𝐱). These are referred
to as “Doob localization schemes,” given their similarity to the more familiar notion of Doob
martingales (in fact, such a process is a martingale for precisely the same reason a Doob
martingale is a martingale). In fact, under mild assumptions, it is always possible to write a
stochastic localization scheme as a Doob localization; even better, it is possible to write it as the
localization scheme associated to an honest observation process, although said process might
not be valued on the same space as 𝐱. See [Mon23, Remark 3.2] for more details.

Now we will generalize Example 1.3 to a broad class of localizations driven by Gaussian
noise with increasing signal-to-noise ratio. For the remainder of the section, let 𝐐 be a positive
(semi)definite 𝑛 × 𝑛matrix 𝐐. Any such matrix induces a positive (semi)definite bilinear form
and (semi)norm given by

⟨𝐱, 𝐲⟩𝐐 ≔ ⟨𝐱,𝐐𝐲⟩, and ‖𝐱‖2𝐐 ≔ ⟨𝐱, 𝐱⟩𝐐.

Definition 2.3. The anisotropic Gaussian localization of 𝜇 is the stochastic localization scheme
associated to the observation process

𝐲𝑡 = 𝑡𝐱 + 𝐐1/2𝐵𝑡,

where 𝐱 ∼ 𝜇 and 𝐵𝑡 is an independent standard Brownian motion. That is,

𝜇𝑡(⋅) ≔ 𝜇(𝐱 ∈ ⋅ ∣ 𝐲𝑡).

Anisotropic, in this context, means having non-identity covariance.
As the conditional density of 𝐲𝑡 given 𝐱 is proportional to

exp(− 1
2𝑡(𝐲𝑡 − 𝑡𝐱)⊤𝐐−1(𝐲𝑡 − 𝑡𝐱)) = exp(− 1

2𝑡‖𝐲𝑡 − 𝑡𝐱‖2𝐐−1),

and

‖𝐲𝑡 − 𝑡𝐱‖2𝐐−1 = ‖𝐲𝑡‖2𝐐−1 − 2𝑡⟨𝐲𝑡, 𝐱⟩𝐐−1 + 𝑡2‖𝐱‖2𝐐−1,

a quick application of Bayes’ rule shows that (knowing 𝜇𝑡 ≪ 𝜇), we have

(1) 𝜇𝑡(d𝐱) =
1
𝑍𝑡
exp(⟨𝐲𝑡, 𝐱⟩𝐐−1 −

𝑡
2‖𝐱‖

2
𝐐−1)𝜇(d𝐱),

where we absorb all terms independent of 𝐱 into the normalizing constant 𝑍𝑡. This computation
is why some authors, e.g. [CE22], call this scheme the “linear-tilt localization”; here we evolve
our observation process in a way that increasingly reveals more about the originally sampled 𝐱,
and exponentially tilt our measure in this random direction.
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2.2. The Likelihood SDE. The stochastic localization process in Definition 2.3 is both general
and highly applicable, as we’ll see in the next section. However, there is a problem: recall that
one of our motivations was in constructing methods of sampling from 𝜇 but how might we
sample 𝐲𝑡? It seems like we would need to already sample 𝐱 ∼ 𝜇, which is problematic.
Luckily, we can circumvent this issue if we can characterize 𝜇𝑡 in a way that doesn’t directly

reference 𝐲𝑡. Define the likelihood ratio process

𝐿𝑡(𝐱) ≔
𝜇𝑡(d𝐱)
𝜇(d𝐱)

= 1
𝑍𝑡
exp(⟨𝐲𝑡, 𝐱⟩𝐐−1 −

𝑡
2‖𝐱‖

2
𝐐−1).

Moreover, let 𝐚𝑡 = ∫𝐱𝜇𝑡(d𝐱) denote the conditional expectation 𝐄[𝐱 ∣ 𝐲𝑡].

Theorem 2.4. There exists a Brownian motion (𝑊𝑡)𝑡≥0 adapted to the filtration generated by 𝐲𝑡
such that for all 𝐱 ∈ 𝐑𝑛 and 𝑡 ≥ 0, we have

d𝐿𝑡(𝐱) = 𝐿𝑡⟨𝐱 − 𝐚𝑡, 𝐐−1/2 d𝑊𝑡⟩,

and 𝐿0(𝐱) = 1.

This is great because it gives us a self-contained way to generate or analyze a linear-tilt
localization, as in Definition 2.3, without worrying about conditional distributions or having to
sample from 𝜇. We still need to compute conditional expectations, but this is markedly easier
in many applications.
To prove Theorem 2.4, we will need the following classical lemma on Itô diffusions with

random drift:

Lemma 2.5. Let 𝐲𝑡 be an Itô process with 𝐲0 = 0 and differential d𝐲𝑡 = 𝐱 d𝑡 + 𝐐1/2 d𝐵𝑡, and let
ℱ𝑡 = {𝐲𝑠 ∶ 0 ≤ 𝑠 ≤ 𝑡}. Assume that 𝜇 has finite second moment, and let 𝛼𝑡 ≔ 𝐄[𝐱 ∣ ℱ𝑡]. Then

𝑊𝑡 ≔ 𝐐−1/2(𝐲𝑡 −∫
𝑡

0
𝛼𝑠 d𝑠)

is a ℱ𝑡-adapted Brownian motion.

Proof. We have

𝑊𝑡 = 𝐵𝑡 + 𝐐−1/2∫
𝑡

0
(𝐱 − 𝛼𝑠) d𝑠,

i.e. d𝑊𝑡 = d𝐵𝑡 + 𝐐−1/2(𝐱 − 𝛼𝑡) d𝑡, so ⟨𝑊⟩𝑡 = 𝑡𝐈𝑛. Thus, by Itô’s lemma, we have for 0 ≤ 𝑠 ≤ 𝑡,

d𝑒𝑖𝑧(𝑊𝑡−𝑊𝑠) = 𝑖𝑧𝑒𝑖𝑧(𝑊𝑡−𝑊𝑠) d𝑊𝑡 −
𝑧2
2 𝑒

𝑖𝑧(𝑊𝑡−𝑊𝑠) d𝑡

⟹ 𝑒𝑖𝑧(𝑊𝑡−𝑊𝑠) = 1 + 𝑖𝑧∫
𝑡

𝑠
𝑒𝑖𝑧(𝑊𝑢−𝑊𝑠) d𝐵ᵆ(2)

+ 𝑖𝑧∫
𝑡

𝑠
𝑒𝑖𝑧(𝑊𝑢−𝑊𝑠)𝐐−1/2(𝐱 − 𝛼ᵆ) d𝑢 −

𝑧2
2 ∫

𝑡

𝑠
𝑒𝑖𝑧(𝑊𝑢−𝑊𝑠) d𝑢

Our moment bounds imply 𝐄[∫𝑡
𝑠 𝑒

𝑖𝑧(𝑊𝑢−𝑊𝑠) d𝐵ᵆ ∣ ℱ𝑠] = 0 (as it is a martingale) and

𝐄[∫
𝑡

𝑠
𝑒𝑖𝑧(𝑊𝑢−𝑊𝑠)𝐐−1/2(𝐱 − 𝛼ᵆ) d𝑢 ∣ ℱ𝑠] = 𝐄[∫

𝑡

𝑠
𝑒𝑖𝑧(𝑊𝑢−𝑊𝑠)𝐐−1/2 𝐄[𝐱 − 𝛼ᵆ ∣ ℱᴂ ] d𝑢 ∣ ℱ𝑠] = 0
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by the tower law. Thus, taking conditional expectations of Eq. (2) gives

𝐄[𝑒𝑖𝑧(𝑊𝑡−𝑊𝑠) ∣ ℱ𝑠] = 1 − 𝑧2
2 ∫

𝑡

𝑠
𝐄[𝑒𝑖𝑧(𝑊𝑢−𝑊𝑠) ∣ ℱ𝑠] d𝑢.

Solving this differential equation gives

𝐄[𝑒𝑖𝑧(𝑊𝑡−𝑊𝑠) ∣ ℱ𝑠] = 𝑒−
𝑧2

2
(𝑡−𝑠),

so (as in the proof of the Lévy characterization)𝑊𝑡 is a Brownian motion, as claimed (adapted
from [LS77, Theorem 7.12]). //

One way to interpret this lemma is to realize that, given such a 𝐲𝑡, we already have the right
quadratic covariation for𝑊𝑡. Thus, by the Lévy characterization, we only need to check that
this process is still a martingale. However, the only FV term that could cause problems is given
by integrating a term which has conditional expectation 0, essentially by construction!
With this in hand, we can prove Theorem 2.4.

Proof of Theorem 2.4. We know

(3) d log𝐿𝑡(𝐱) = ⟨d𝐲𝑡, 𝐱⟩𝐐−1 −
1
2‖𝐱‖

2
𝐐−1 d𝑡 − d log𝑍𝑡,

so we can start by analyzing the last term. Writing ℎ𝑡(𝐱) = ⟨𝐲𝑡, 𝐱⟩𝐐−1 − 𝑡
2
‖𝐱‖2𝐐−1 for the

exponential tilting factor, we begin by using Itô’s lemma to compute

d𝑍𝑡 = d(∫
𝐑𝑛
𝑒ℎ𝑡(𝐱) 𝜇(d𝐱))

= ∫
𝐑𝑛
(⟨d𝐲𝑡, 𝐱⟩𝐐−1 −

1
2‖𝐱‖

2
𝐐−1 d𝑡)𝑒ℎ𝑡(𝐱) 𝜇(d𝐱) +

1
2(∫𝐑𝑛

‖𝐱‖2𝐐−1𝑒ℎ𝑡(𝐱) 𝜇(d𝐱)) d𝑡,

= ⟨𝐐−1 d𝐲𝑡,∫
𝐑𝑛
𝐱𝑒ℎ𝑡(𝐱) 𝜇(d𝐱)⟩ = 𝑍𝑡⟨𝐐−1 d𝐲𝑡, 𝐚𝑡⟩.

Note that the quadratic covariation of 𝐲𝑡 is 𝐐𝑡, as d𝐲𝑡 = 𝐱 d𝑡 + 𝐐1/2 d𝐵𝑡. In particular, the
quadratic variation ⟨𝑍⟩𝑡 satisfies

d⟨𝑍⟩𝑡 = 𝑍2𝑡 ‖𝐚𝑡‖2𝐐−1 d𝑡.

Thus, another application of Itô’s lemma shows

d log𝑍𝑡 =
d𝑍𝑡
𝑍𝑡

− 1
2
d⟨𝑍⟩𝑡
𝑍2𝑡

= ⟨𝐚𝑡, d𝐲𝑡⟩𝐐−1 −
1
2‖𝐚𝑡‖

2
𝐐−1 d𝑡,

and reinserting into Eq. (3) gives

d log𝐿𝑡(𝐱) = ⟨d𝐲𝑡, 𝐱⟩𝐐−1 −
1
2‖𝐱‖

2
𝐐−1 d𝑡 − ⟨𝐚𝑡, d𝐲𝑡⟩𝐐−1 +

1
2‖𝐚𝑡‖

2
𝐐−1 d𝑡

= ⟨𝐱 − 𝐚𝑡, d𝐲𝑡⟩𝐐−1 −
1
2(‖𝐱‖𝐐−1 − ‖𝐚𝑡‖𝐐−1) d𝑡

= ⟨𝐱 − 𝐚𝑡, d𝐲𝑡 − 𝐚𝑡 d𝑡⟩𝐐−1 −
1
2‖𝐱 − 𝐚𝑡‖2𝐐−1 d𝑡.
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Here is where Lemma 2.5 comes in: we observe that as 𝐲𝑡 is a sufficient statistic for 𝐱 under
𝜇𝑡, 𝐚𝑡 as defined here is equal to the process 𝛼𝑡 in the lemma; thus we can take the Brownian
motion𝑊𝑡 constructed therein, observing it has

d𝑊𝑡 = 𝐐−1/2(d𝐲𝑡 − 𝐚𝑡 d𝑡).

In particular, we find that

d log𝐿𝑡(𝐱) = ⟨𝐱 − 𝐚𝑡, 𝐐−1/2 d𝑊𝑡⟩ −
1
2‖𝐱 − 𝐚𝑡‖2𝐐−1 d𝑡.

Applying Itô’s lemma one final time, we observe d⟨log𝐿(𝐱)⟩𝑡 = ‖𝐱 − 𝐚𝑡‖2𝐐−1, and so

d𝐿𝑡(𝐱) = 𝐿𝑡⟨𝐱 − 𝐚𝑡, 𝐐−1/2 d𝑊𝑡⟩,

thus completing the proof.1 //

Remark 2.6. The localization SDE in Theorem 2.4 is highly useful, but it is still an infinite-
dimensional family of SDEs, so directly simulating it (without working on a subspace of much
smaller size, e.g. the unit hypercube as in Example 1.2) might still be inefficient. However,
another benefit of Lemma 2.5 and the linear-tilt form of Definition 2.3 is that we can instead
simulate 𝐲𝑡 via

d𝐲𝑡 = 𝐚𝑡 d𝑡 + 𝐐1/2 d𝑊𝑡,
with 𝐲0 = 0, and then simulate 𝜇𝑡 by directly computing the tilts of 𝜇, as in Eq. (1). This idea
was leveraged to great effect in [EMS24], where the authors use it to efficiently sample from
the Sherrington-Kirkpatric Gibbs measure in the high-temperature regime. Alternatively, one
can approach the linear-tilt localization from the perspective of defining it as the measure
associated to a solution of the localization SDE. This lends itself well to deriving quantitative
bounds on the evolution of Cov(𝜇𝑡), which is an approach more common when applying these
ideas to high-dimensional geometry.

3. Low-Entropy Decompositions of Measures

The original motivation for [AM21], and indeed a good fraction of the stochastic localization
literature, is in decomposing a high-dimensional 𝜇 into a mixture of simpler measures:

(4) 𝜇 = 𝐄𝜃 𝜇𝜃 = ∫
Θ
𝜇𝜃 𝜌(d𝜃),

where Θ is a parameter space with a probability measure 𝜌. A bad approach would be to let
𝜌 = 𝜇, Θ = 𝐑𝑛, and 𝜇𝜃 = 𝛿𝜃: then Eq. (4) would be satisfied, but we would be shifting the
problem to 𝜌, without balancing out the complexity of 𝜇 among the 𝜇𝜃’s. What would be better
is for the 𝜇𝜃’s to be well-controlled (e.g. close to product measures), with 𝜌 having low entropy.
Below, we present a construction of such a decomposition, originally due to [Eld19]. However,

it was reinterpreted and reproved in information-theoretic terms by [AM21], who managed to
greatly simplify what were otherwise direct computational proofs. To motivate this reinterpre-
tation, we first need to recall some concepts from information theory.

1On a personal note, I initially struggled with the applications of Itô’s lemma presented here. I encourage
the curious reader to work carefully through the computation of d𝑍𝑡, as a wonderful exercise on using the
multidimensional version of Itô’s lemma; it may also help to assume𝐐 = 𝐈
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3.1. Awhirlwind tour of information theory. We recall some notions from information
theory which will be key in establishing the low-entropy nature of our putative decomposition.

Definition 3.1. The differential entropy of a r.v. 𝑋 with density 𝑓 (w.r.t. Lebesgue measure) is

ℎ(𝑋) ≔ 𝐄𝑋∼𝑓[− log𝑓(𝑋)] = −∫𝑓(𝐱) log𝑓(𝐱) d𝐱.

Example 3.2 (Gaussian differential entropy). Let 𝐱 ∼ 𝓝(𝜇, Σ), for Σ a symmetric positive-
definite 𝑛 × 𝑛 covariance matrix. What is ℎ(𝐱)? It is easy to see that the differential entropy is
translation invariant, so we can assume 𝜇 = 0. Recall the density of 𝐱 is

𝜙(𝐱) = 1
√(2𝜋)𝑛 detΣ

exp(−12𝐱
⊤Σ−1𝐱).

Thus,
log𝜙(𝐱) = −12𝐱

⊤Σ−1𝐱 − 𝑛
2 log(2𝜋) −

1
2 log detΣ.

Note that the last two terms do not depend on 𝐱, so it remains to compute
𝐄𝜙 𝐱⊤Σ−1𝐱 = 𝐄𝜙 tr(𝐱⊤Σ−1𝐱) = 𝐄𝜙 tr(Σ−1𝐱𝐱⊤)

= tr(Σ−1 𝐄𝜙(𝐱𝐱⊤)) = tr(Σ−1Σ) = tr(𝐈𝑛) = 𝑛.
Using that log detΣ = tr(logΣ) (both are the sum of the log-eigenvalues of Σ), we conclude

ℎ(𝐱) = 𝑛
2 log(2𝜋𝑒) +

1
2 tr(logΣ).

Intuitively, entropy corresponds to how much “information” is contained in a r.v., or alter-
natively, how much the probability density is spread out. We can also ask what the relative
entropy between two measures is:

Definition 3.3. Suppose 𝜇 ≪ 𝜈. The Kullback-Leibler divergence is

D(𝜇 ‖ 𝜈) ≔ 𝐄𝜇 log
𝜇(d𝐱)
𝜈(d𝐱)

.

The most important quality of the KL divergence is its nonnegativity; indeed, by Jensen’s
inequality applied to the convex function 𝑥 log𝑥,

D(𝜇 ‖ 𝜈) = 𝐄𝜈[
𝜇(d𝐱)
𝜈(d𝐱)

log
𝜇(d𝐱)
𝜈(d𝐱) ]

≥ (𝐄𝜈
𝜇(d𝐱)
𝜈(d𝐱) )

log(𝐄𝜈
𝜇(d𝐱)
𝜈(d𝐱) )

= 0,

as
𝐄𝜈

𝜇(d𝐱)
𝜈(d𝐱)

= ∫
𝜇(d𝐱)
𝜈(d𝐱)

𝜈(d𝐱) = ∫𝜇(d𝐱) = 1.

One consequence of this nonnegativity is the amazing fact that the multivariate Gaussian
distribution has maximal entropy among all distributions with the same covariance.

Proposition 3.4 (Gaussian has maximal entropy). Suppose 𝑓 is any probability density on 𝐑𝑛

with (positive-definite) covariance Σ, and let 𝜙 be the𝓝(0, Σ) density. Then ℎ(𝑓) ≤ ℎ(𝑔).

Proof. Without loss of generality, we can assume 𝑓 has mean 0. We can compute the KL
divergence between 𝑓 and 𝜙; this is well-defined as 𝜙 > 0, so 𝑓 d𝐱 ≪ 𝜙 d𝐱:

D(𝑓 ‖ 𝑔) = ∫𝑓(𝐱) log(
𝑓(𝐱)
𝜙(𝐱))

d𝐱 = −ℎ(𝑓) −∫𝑓(𝐱) log𝜙(𝐱) d𝐱.
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To control the latter term, we can mimic the computation of Example 3.2:

−∫𝑓(𝐱) log𝜙(𝐱) d𝐱 = 1
2 ∫𝑓(𝐱)𝐱⊤Σ𝐱 + 1

2 ∫ log((2𝜋)𝑛 detΣ)𝑓(𝐱) d𝐱

= 1
2 𝐄𝑓[𝐱

⊤Σ𝐱] + 1
2 log((2𝜋)

𝑛 detΣ) = ℎ(𝜙),

where we compute 𝐄𝑓[𝐱⊤Σ𝐱] = 𝑛 exactly as before. By nonnegativity of KL divergence, we
have ℎ(𝜙) − ℎ(𝑓) ≥ 0, thus completing the proof (adapted from Wikipedia, vis-a-vis [CT06,
Theorem 8.6.5]). //

Finally, we want a quantitative way of understanding how far away two r.v.s 𝑋, 𝑌 are from
being independent, i.e. how much information they contain about each other.

Definition 3.5. Themutual information of 𝑋 and 𝑌 is

𝐼(𝑋; 𝑌) ≔ D(𝜇𝑋,𝑌 ‖ 𝜇𝑋 × 𝜇𝑌),

where 𝜇𝑋, 𝜇𝑌 are the marginals of 𝑋, 𝑌 and 𝜇𝑋,𝑌 is their joint distribution.

In some cases, it might be that we don’t know the joint distribution explicitly, but we do know
the marginal and conditional distributions satisfy 𝜇𝑋, 𝜇𝑋|𝑌(⋅ ∣ 𝐲) ≪ 𝜈𝑋, for some reference 𝜈𝑋.

Proposition 3.6. In the above situation, we have

𝐼(𝑋; 𝑌) = 𝐄𝐲D(𝜇𝑋|𝑌(⋅ ∣ 𝐲) ‖ 𝜈𝑋) − D(𝜇𝑋 ‖ 𝜈𝑋).

Proof. We can compute

𝐄𝐲D(𝜇𝑋|𝑌(⋅ ∣ 𝑦) ‖ 𝜈𝑋) = 𝐄𝐲∫ log
𝜇𝑋|𝑌(d𝐱 ∣ 𝐲)
𝜈𝑋(d𝐱)

𝜇𝑋|𝑌(d𝐱 ∣ 𝐲)

= ∫ log(
𝜇𝑋|𝑌(d𝐱 ∣ 𝐲)
𝜈𝑋(d𝐱)

⋅
𝜇𝑌(d𝐲)
𝜇𝑌(d𝐲)

) 𝜇𝑋|𝑌(d𝐱 ∣ 𝐲)𝜇𝑌(d𝐲)

= ∫ log(
𝜇𝑋,𝑌(d𝐱, d𝐲)
𝜈𝑋(d𝐱)𝜇𝑌(d𝐲)

) 𝜇𝑋,𝑌(d𝐱, d𝐲).

Similarly, we find that

D(𝜇𝑋 ‖ 𝜈𝑋) = ∫ log
𝜇𝑋(d𝐱)
𝜈𝑋(d𝐱)

𝜇𝑋(d𝐱)

= ∫(∫ log
𝜇𝑋(d𝐱)
𝜈𝑋(d𝐱)

𝜇𝑌|𝑋(d𝐲 ∣ 𝐱)) 𝜇𝑋(d𝐱)

= ∫ log
𝜇𝑋(d𝐱)𝜇𝑌(d𝐲)
𝜈𝑋(d𝐱)𝜇𝑌(d𝐲)

𝜇𝑋,𝑌(d𝐱, d𝐲).

Subtracting these two terms, using properties of log to cancel the denominators, gives 𝐼(𝑋; 𝑌) =
D(𝜇𝑋,𝑌 ‖ 𝜇𝑋 × 𝜇𝑌), as desired. //

We can also relate mutual information to differential entropy: if 𝐱 and 𝐲 have densities w.r.t.
Lebesgue measure, then it is easy to see that

𝐼(𝐱; 𝐲) = ℎ(𝐱) + ℎ(𝐲) − ℎ(𝐱, 𝐲),
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where the latter term is the mutual entropy of the joint distribution. Moreover, the conditional
entropy of 𝑋, 𝑌, with joint density 𝑓(𝐱, 𝐲), is defined as

ℎ(𝑌|𝑋) ≔ −∫𝑓(𝐱, 𝐲) log𝑓(𝐲|𝐱) d𝐲 d𝐱.

It satisfies ℎ(𝑌|𝑋) = ℎ(𝑋, 𝑌)−ℎ(𝑋), and has the property that it is the average of the differential
entropy of the conditional distribution 𝑌|𝑋 = 𝐱:

ℎ(𝑌|𝑋) = ∫(∫−𝑓(𝐲|𝐱) log𝑓(𝐲|𝐱) d𝐲)𝑓(𝐱) d𝐱 = 𝐄𝐱 ℎ(𝑌|𝑋 = 𝐱).

Thus, another interpretation of Proposition 3.6 becomes

(5) 𝐼(𝐱; 𝐲) = ℎ(𝐲) − ℎ(𝐲|𝐱).

3.2. The low-entropy decomposition. We finally come to our desired low-entropy decompo-
sition of 𝜇. Fix a positive semidefinite 𝑛× 𝑛matrix 𝐐, let 𝐱 ∼ 𝜇, and consider the output of our
anisotropic Gaussian localization in Definition 2.3 at a uniformly random time 𝜏 ∈ Unif([1, 2]):

𝐲 ≔ 𝐲𝜏 = 𝜏𝐱 + 𝐐1/2𝐵𝜏.

Here 𝐱, 𝜏, 𝐵𝜏 are all independent (note that we could have simply sampled 𝐳 ∼ 𝓝(0, 𝐼𝑛) and
considered √𝜏𝐳 instead, but this way the notation remains consistent). Let 𝜃 = (𝐲, 𝜏) and
𝜇𝜃(⋅) = 𝜇(⋅ ∣ 𝜃), so that 𝐄𝜃 𝜇𝜃 = 𝜇, as in Eq. (4) (by the tower law). One way to motivate this
decomposition is by considering noisy observations of 𝐱 through a Gaussian channel; given
said noisy observations, how much variance is there left in 𝐱, and how much does the our
observation depend on 𝐱 or the noise itself?

Theorem 3.7. With the setup above, we have

𝐄𝜃 Cov(𝜇𝜃) ⪯ 𝐐;(6)

0 ≤ 𝐼(𝜃; 𝐱) ≤ 1
2 log det(𝐈𝑛 + 2𝐐−1 Cov(𝜇));(7)

𝐄𝜃[Cov(𝜇𝜃)𝐐−1 Cov(𝜇𝜃)] ⪯ Cov(𝜇).(8)

Intuitively, Eqs. (6) and (8) control the covariance of the component measures 𝜇𝜃 of the
decomposition, while Eq. (7) controls the overall entropy of themixture. That is, the lower 𝐼(𝜃; 𝐱)
is, the more “independent” 𝐱 and the decomposition parameters are, avoiding the maximum
entropy situation of the pathological decomposition discussed in the intro, where 𝜃 = 𝐱 and
𝐼(𝐱; 𝐱) = ∞. The idea is now that we can choose 𝐐 to trade off the complexity in 𝜇 between the
complexity of the component measures and the entropy of the decomposition.
The theorem above is originally due to [Eld19], but a far more informative (no pun intended)

proof was developed by [AM21], which we recount in part here. We start with Eq. (6).

Proof of Eq. (6). Imagine we are in the estimation-theoretic setting, trying to estimate the value
of a parameter 𝐱 from noisy observations 𝜃 = (𝐲, 𝜏).2 In particular, let us compare the estimators

𝐱̂MLE =
𝐲
𝜏 and 𝐱̂Bayes = 𝐄[𝐱 ∣ 𝜃] = ∫𝐱𝜇𝜃(d𝐱).

2Any statisticians – myself included – are likely bothered by this notation, but bear with us.
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By the multivariate (conditional) bias-variance tradeoff, we know that 𝐱̂Bayes minimizes the
mean-square error 𝐄[(𝐱 − 𝐱̂)⊗2] among all estimators 𝐱̂, in the positive-semidefinite ordering
[Jac20]. In particular, we have

𝐄𝜃[Cov(𝜇𝜃)] = 𝐄𝜃[𝐄𝑥∼𝜇𝜃(𝐱 − 𝐱̂⊗2
Bayes)] ⪯ 𝐄[(𝐱 − 𝐱̂⊗2

MLE)] = Cov(𝐐1/2𝐵𝜏) = 𝐄[𝜏−1]𝐐 ⪯ 𝐐,

as desired. //

Next, we can utilize the toolkit developed in the previous section to quickly dispatch Eq. (7).

Proof of Eq. (7). We want to bound 𝐼(𝐱; 𝜃) from above and below. The lower bound 𝐼(𝐱; 𝜃) ≥ 0
was established following Definition 3.3. For the upper bound, consider the joint distribution
of 𝐱, 𝐲 given 𝜏 = 𝑡. We recall by Eq. (5) that

𝐼(𝐱; 𝐲) = ℎ(𝐲) − ℎ(𝐲 ∣ 𝐱).

By Example 3.2 and the fact that 𝐲 ∣ 𝐱 ∼ 𝓝(𝑡𝐱,𝐐𝑡), we know

ℎ(𝐲 ∣ 𝐱) = 𝑛
2 log(2𝜋𝑒) +

1
2 tr log𝐐𝑡

Moreover, as the Gaussian distribution has maximal entropy, Proposition 3.4 gives

ℎ(𝐲) ≤ 𝑛
2 log(2𝜋𝑒) +

1
2 tr logCov(𝜇𝐲),

so overall, as Cov(𝜇𝐲) = 𝑡2 Cov(𝜇) + 𝐐𝑡, we get that

𝐼(𝐱; 𝐲) ≤ 1
2 tr log(𝐐𝑡 + 𝑡2 Cov(𝜇)) − 1

2 tr log(𝐐𝑡) =
1
2 log det(𝐈𝑛 + 𝑡𝐐−1 Cov(𝜇)).

Finally, as 𝑡 ≤ 2, we conclude. //

We will omit the proof of Eq. (8), on the grounds that, unlike the previous two proofs, it
has no illustrative flavor and is instead computational, being a direct application of Gaussian
integration by parts and analysis of the minimum mean square error as in the proof of Eq. (6).

4. Conclusions

Overall, stochastic localization is a technique in the analysis of complicated, high-dimensional
probability measures, with longstanding motivations, myriad applications, and well-developed
theoretical underpinnings. While the key ideas go back to the 70s, the past decade has seen a
resurgence in using stochastic localizations for everything from improved asymptotic isoperimet-
ric coefficients to predicted but previously unrealizable fast sampling algorithms to improved
mixing time bounds on Markov chains. As we’ve seen, while the notion is very general, in
specific circumstances we can perform precise analysis using nothing more than basic sto-
chastic process theory. Moreover, as a benefit of the underlying simplicity of these concepts,
it is possible to effectively motivate their application, as we did in the case of low-entropy
decompositions of measures, and thus construct efficient proofs of the associated quantitative
estimates. It is the hope of the author that this and similar techniques will go on to be used to
even more dramatic effect in high-dimensional probability theory in the future.
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