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Stochastic processes are collections of random variables indexed by time, and their
study is critical to statistics, physics, and finance. In particular, Itô diffusions, which arise
as the stochastic integrals of time-homogenous functions, have a rich theory, coming from
their connection to elliptic PDE. The goal of this talk is to explore this connection, and
use these diffusions to explicitly solve some PDEs. We will first give an overview of the
theory of Itô diffusions, discuss their associated mean-value properties and connections to
elliptic operators, and finally leverage some hard theorems to solve the Dirichlet problem.
These are notes from my final presentation for Math 289Y, a Fall 2023 topics course on

elliptic PDE taught by Freid Tong. All mistakes are my own; please reach out to me if you
spot anything!

1. Brownian Motion and Itô Diffusions

1.1. Brownian motion and Itô integrals.

Definition 1.1. An 𝑛-dimensional Brownian motion is an R𝑛-valued continuous-time sto-
chastic process {𝐵𝑡 = (𝐵(1)𝑡 , 𝐵

(2)
𝑡 , . . . , 𝐵

(𝑛)
𝑡 )}

𝑡≥0
satisfying

(a) (Continuity) The function 𝑡 ↦ 𝐵𝑡 is continuous.

(b) (Stationary increments) For 0 ≤ 𝑠, 𝑡 , 𝐵𝑡+𝑠 − 𝐵𝑠 and 𝐵𝑡 are identically distributed.

(c) (Independent increments) For 0 ≤ 𝑟 < 𝑠 ≤ 𝑡 < 𝑢, 𝐵𝑢 −𝐵𝑡 and 𝐵𝑠 −𝐵𝑟 are independent.

(d) (Normal) For 0 ≤ 𝑡 , the random vector 𝐵𝑡 is Multivariate Normal with mean vector
0 and covariance matrix 𝑡𝐼 .

Date: December 9, 2023.
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That Brownian motions, starting at given points 𝑥 ∈ R𝑛, even exist is a consequence
of Kolmogorov’s extension theorem, and we won’t concern ourself with this technicality
[Oks07, 2.1.5].
Let 𝑋𝑡 be an R𝑛-valued stochastic process, i.e. a continuous sequence of random vec-

tors. The study of stochastic differential equations concerns such processes satisfying
equations like

𝑑𝑋𝑡

𝑑𝑡
= 𝑏(𝑡,𝑋𝑡) + 𝜎(𝑡,𝑋𝑡) ⋅ “noise",

where we have some random noise. Effectively, the only reasonable source of this random
noise comes as the “formal derivative" of Brownian motion. Such a thing doesn’t literally
exist – Brownian motion is nowhere differentiable – but this ensures that the integrated
noise has stationary, independent increments with mean 0. Thus, we can suggestively
rewrite this stochastic differential equation as

𝑑𝑋𝑡 = 𝑏(𝑡,𝑋𝑡)𝑑𝑡 + 𝜎(𝑡,𝑋𝑡)𝑑𝐵𝑡 .

Engaging in some wishful thinking, a solution of this SDE would satisfy

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏(𝑠,𝑋𝑠)𝑑𝑠 + ∫

𝑡

0
𝜎(𝑠,𝑋𝑠)𝑑𝐵𝑠 .

The definition of Itô integrals, i.e. expressions of the form ∫
𝑡

0 𝜎(𝑠,𝑋𝑠)𝑑𝐵𝑠 , is rigged tomake
sense of this intuition. What follows is a whirlwind overview of the key ideas: see [Oks07,
3,4] for proofs.

Definition 1.2. Let V(𝑆,𝑇 ) denote the class of functions 𝑓 (𝑡,𝜔)∶ [0,∞) × Ω Ð→ R such
that

(a) 𝑓 is B ×ℱ-measurable, with B the Borel 𝜎-algebra on the half line;

(b) there exists an increasing familyH𝑡 , 𝑡 ≥ 0 of 𝜎-algebras such that 𝐵𝑡 is a martingale
with respect to H𝑡 and 𝑓𝑡 is H𝑡 -adapted;

(c) 𝐸 [∫
𝑇

𝑆 𝑓 (𝑡,𝜔)2𝑑𝑡] <∞.

These are Itô integrable functions. For each 𝑛, let 𝑆 = 𝑡1, . . . , 𝑡𝑛+1 = 𝑇 denote a partition of
[𝑆,𝑇 ] Then, the Itô integral of 𝑓 is the limit

∫
𝑇

𝑆
𝑓 (𝑡,𝜔)𝑑𝐵𝑡(𝜔) = lim

𝑛Ð→∞
𝑛

∑
𝑗=1
𝑓 (𝑡 𝑗 ,𝜔)(𝐵𝑡 𝑗+1 − 𝐵𝑡 𝑗 )(𝜔),

as the partition width goes to 0.

Remark 1.1. In reality, this is more an intuition then a definition; the proper definition
involves imitating the definition of the Lebesgue integral; first defining the Itô integral
for functions which are elementary and then approximating functions in V by elementary
ones.
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Thus, the Itô integral is a random variable, with the following properties: let 𝑓 ,𝑔 ∈
V(0,𝑇 ), and 0 ≤ 𝑆 <𝑈 <𝑇 .

(a) ∫
𝑇

𝑆 𝑓 𝑑𝐵𝑡 = ∫
𝑈

𝑆 𝑓 𝑑𝐵𝑡 + ∫
𝑇

𝑈 𝑓 𝑑𝐵𝑡 .

(b) ∫
𝑇

𝑆 (𝑐 𝑓 +𝑔)𝑑𝐵𝑡 = 𝑐 ∫
𝑇

𝑆 𝑓 𝑑𝐵𝑡 + ∫
𝑡

𝑆 𝑔𝑑𝐵𝑡 .

(c) 𝐸 [∫
𝑇

𝑆 𝑓 𝑑𝐵𝑡] = 0 and 𝐸 [(∫
𝑇

𝑆 𝑓 𝑑𝐵𝑡)
2
] = 𝐸 [∫

𝑇

𝑆 𝑓 2𝑑𝑡] (Itô isometry).

(d) Let ℱ𝑡 denote the 𝜎-algebra generated by 𝐵𝑠, 𝑠 ≤ 𝑡 . Then, 𝑡 ↦ ∫
𝑡

0 𝑓 𝑑𝐵𝑡 can be
chosen to be continuous in 𝑡 , and is a martingale with respect toℱ𝑡 .

Itô integrals can be extended to multiple dimensions similarly; if 𝑣 = (𝑣𝑖 𝑗(𝑡,𝜔)) is an
𝑚 × 𝑛 matrix of functions, with each entry being Itô integrable, and 𝐵𝑡 = (𝐵(1)𝑡 , . . . , 𝐵

(𝑛)
𝑡 )

denoting 𝑛-dimensional Brownian motion, then

∫
𝑇

𝑆
𝑣 𝑑𝐵𝑡 = ∫

𝑇

𝑆

⎛
⎜
⎝

𝑣11 . . . 𝑣1𝑛
⋮ ⋱ ⋮
𝑣𝑚1 . . . 𝑣𝑚𝑛

⎞
⎟
⎠

⎛
⎜⎜
⎝

𝑑𝐵
(1)
𝑡

⋮
𝑑𝐵
(𝑛)
𝑡

⎞
⎟⎟
⎠
.

1.2. Solutions of SDEs and diffusions.

Definition 1.3. An Itô process or stochastic integral is a stochastic process of the form

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑢(𝑠,𝜔)𝑑𝑠 + ∫

𝑡

0
𝑣(𝑠,𝜔)𝑑𝐵𝑠,

with 𝑣 Itô integrable. This can be written in differential form

𝑑𝑋𝑡 = 𝑢 𝑑𝑡 + 𝑣 𝑑𝐵𝑡 .

In 𝑛-dimensions, an R𝑛-valued Itô integral is given in differential form above, with 𝑢 =
(𝑢𝑖(𝑠,𝜔)) and 𝑣 = (𝑣𝑖 𝑗(𝑠,𝜔)), 1 ≤ 𝑖 ≤ 𝑛, and 1 ≤ 𝑗 ≤𝑚, and 𝐵𝑡 an𝑚-dimensional Brownian
motion.

Unlike Itô integrals themselves, Itô processes are closed under smooth maps; this is the
content of the famous Itô lemma:

Lemma 1.4. Let 𝑑𝑋(𝑡) = 𝑢 𝑑𝑡 + 𝑣 𝑑𝐵(𝑡) be an 𝑛-dimensional Itô process,

𝑔(𝑡, 𝑥) = (𝑔1(𝑡, 𝑥), . . . ,𝑔𝑝(𝑡, 𝑥))

a 𝐶2 map from [0,∞) × R𝑛 Ð→ R𝑝 . Then, 𝑌(𝑡,𝜔) = 𝑔(𝑡,𝑋(𝑡)) is a 𝑝-dimensional Itô process,
with 𝑘th component

𝑑𝑌𝑘 =
𝜕𝑔𝑘

𝜕𝑡
(𝑡,𝑋)𝑑𝑡 + 𝜕𝑔𝑘

𝜕𝑥𝑖
(𝑡,𝑋)𝑑𝑋𝑖 +

1
2
𝜕2𝑔𝑘
𝜕𝑥𝑖𝜕𝑥 𝑗

(𝑡,𝑋)𝑑𝑋𝑖𝑑𝑋 𝑗 ,

with 𝑑𝐵𝑖𝑑𝐵 𝑗 = 𝛿𝑖 𝑗𝑑𝑡 and 𝑑𝐵𝑖𝑑𝑡 = 0.
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Proof. See [Oks07, 4.2.1]. □

The final background ingredient we need is the following theorem, which guarantees
the existence of strong solutions to SDEs with “bounded" coefficients.

Theorem 1.5 (Existence and uniqueness for stochastic differential equations). Let 𝑇 > 0,
𝑏∶ [0,𝑇 ] × R𝑛 Ð→ R𝑛, 𝜎 ∶ [0,𝑇 ] × R𝑛 Ð→ R𝑛×𝑚 be measurable satisfying:

(a) There exists a constant 𝐶 s.t.

∣𝑏(𝑡, 𝑥)∣ + ∣𝜎(𝑡, 𝑥)∣ ≤𝐶(1 + ∣𝑥 ∣),

for all 𝑥 ∈ R𝑛, 0 ≤ 𝑡 ≤𝑇 .

(b) There exists a constant 𝐷 s.t.

∣𝑏(𝑡, 𝑥) −𝑏(𝑡,𝑦)∣ + ∣𝜎(𝑡, 𝑥) − 𝜎(𝑡,𝑦)∣ ≤ 𝐷 ∣𝑥 −𝑦∣,

for all 𝑥,𝑦 ∈ R𝑛, 0 ≤ 𝑡 ≤𝑇 .

Then, for any 𝑥 ∈ R𝑛, the SDE

𝑑𝑋𝑡 = 𝑏(𝑡,𝑋𝑡)𝑑𝑡 + 𝜎(𝑡,𝑋𝑡)𝑑𝐵𝑡 , 0 ≤ 𝑡 ≤𝑇,𝑋0 = 𝑥

has a unique 𝑡-continuous solution 𝑋𝑡 such that it isℱ𝑡 -adapted and

𝐸 [∫
𝑇

0
∣𝑋𝑡 ∣2𝑑𝑡] <∞.

Proof. See [Oks07, 5.2.1]. Key idea is Picard iteration with Itô integrals! □

2. Harmonic Measure and the Infinitesimal Generator

For this section, let 𝑋𝑡 be an Itô diffusion in R𝑛, which means it is given by

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝐵𝑡 ,

where the coefficients are independent of time and satisfy the conditions in 1.5, so that
the above SDE can be solved. For any 𝑥 ∈ R𝑛, let 𝑄𝑥 denote the distribution of {𝑋𝑡}𝑡≥0
starting at 𝑋0 = 𝑥 , and 𝐸𝑥 denote expectation with respect to this measure. Diffusions are
special in stochastic PDE because they satisfy a Markov property: intuitively, conditional
on their present behavior, their future is independent of the past. We will define stopping
times and state the strong Markov property, and use this to show how diffusions give rise
to mean value theorems on arbitrary domains.

4



2.1. The strong Markov property.

Definition 2.1. Let {𝒩𝑡} denote an increasing family of 𝜎-algebras. A random variable
𝜏 ∶Ω Ð→ [0,∞] is a stopping time with respect to {𝒩𝑡} if

{𝜏 ≤ 𝑡} ∈𝒩𝑡 , for all 𝑡 ≥ 0.

Example 2.1. First, if 𝜏 = 𝑡0 is constant, then 𝜏 is trivially a stopping time, as

{𝜏 ≤ 𝑡} =
⎧⎪⎪⎨⎪⎪⎩

Ω 𝑡0 ≤ 𝑡
∅ 𝑡0 > 𝑡

.

Second, if ℳ𝑡 is the 𝜎-algebra generated by 𝑋𝑠, 𝑠 ≤ 𝑡 , and 𝐻 ⊂ R𝑛 is a Borel set, then

𝜏𝐻 = inf {𝑡 > 0 ∣ 𝑋𝑡 /∈ 𝐻}

is a stopping time; ℳ𝑡 = ∩𝑠>𝑡ℳ𝑠 and any Borel set can be approximated by closed sets
[Oks07, 7.2.2]. This is the first exit time from 𝐻 . Note that the “last exit time" would not
be a stopping time, as it depends on the behavior of 𝑋𝑡 into the future.

Theorem 2.2 (Strong Markov Property for Itô Diffusions). Let ℱ𝑡 denote the 𝜎-algebra
generated by 𝐵𝑠, 𝑠 ≤ 𝑡 , 𝜏 a stopping time with respect to ℱ𝑡 with 𝜏 < ∞ a.s., and ℱ𝜏 the
𝜎-algebra generated by 𝐵𝑠∧𝜏 , 𝑠 ≥ 0. Then if 𝑓 ∶R𝑛 Ð→ R is bounded and measurable,

𝐸𝑥[𝑓 (𝑋𝜏+ℎ ∣ℱ𝜏] = 𝐸𝑋𝜏 [𝑓 (𝑋ℎ)], for all ℎ ≥ 0.

Proof. See [Oks07, 7.2.4]. The main idea is that Brownian motion itself has a strong
Markov property, and this gets bootstrapped up to arbitrary diffusions. □

For 𝑡 ≥ 0, the shift operator on𝑀∞-measurable functions is defined bys

\𝑡 (𝑔1(𝑋𝑡1)⋯𝑔𝑘(𝑋𝑡𝑘)) = 𝑔1(𝑋𝑡1+𝑡)⋯𝑔𝑘(𝑋𝑡𝑘+𝑡),

with 𝑔𝑖 Borel measurable, and extending by taking limits. Then, the strong Markov prop-
erty can be expressed as

𝐸𝑥[\𝜏[∣ℱ𝜏] = 𝐸𝑋𝜏 [[],
for all bounded [ ∈ H.
2.2. Harmonic measure. Let 𝐺 ⊂⊂ 𝐻 be measurable with 𝜏𝐻 < ∞ a.s. 𝑄𝑥 . If 𝑔 is
any bounded continuous function on R𝑛, we know that the intermediate hitting time
inf {𝑡 > 𝜏𝐺 ∣ 𝑋𝑡 /∈ 𝐻} is just the first hitting time 𝜏𝐻 , so \𝜏𝐺𝑔(𝑋𝜏𝐻 ) = 𝑔(𝑋𝜏𝐻 ). Therefore,

𝐸𝑥 [𝑔(𝑋𝜏𝐻 )] = 𝐸𝑥 [𝐸𝑥 [\𝜏𝐺𝑔(𝑋𝜏𝐻 ) ∣ℱ𝜏]] = 𝐸𝑥 [𝐸𝑋𝜏𝐺 [𝑔(𝑋𝜏𝐻 )]] = ∫
𝜕𝐺
𝐸𝑦 [𝑔 (𝑋𝜏𝐻 )]⋅𝑄𝑥(𝑋𝜏𝐺 ∈ 𝑑𝑦).

Based on this, we can define the harmonic measure of 𝑋 on 𝜕𝐺 as

`𝑥𝐺(𝐹) = 𝑄𝑥(𝑋𝜏𝐺 ∈ 𝐹),

for 𝑥 ∈ 𝐺 and 𝐹 ⊂ 𝜕𝐺 . Because any 𝑓 ∈ 𝐿1(`𝑥𝐺) can be approximated by bounded continu-
ous functions as above, this identity applies to all bounded measurable functions.
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Definition 2.3. Let 𝑓 be locally bounded, measurable on 𝐻 . 𝑓 is called 𝑋 -harmonic if, for
all 𝑥 ∈ 𝐻 and bounded opens𝑈 ⊂⊂ 𝐻 ,

𝑓 (𝑥) = 𝐸𝑥[𝑓 (𝑋𝜏𝑈 )].

Example 2.2. Suppose 𝜑 is bounded measurable on 𝜕𝐻 , and let 𝑢(𝑥) = 𝐸𝑥[𝜑(𝑋𝜏𝐻 )] for
𝑥 ∈ 𝐷 . Then, by the above calculation, for any𝑈 ⊂⊂ 𝐻 , 𝑢 has a mean-value property

𝑢(𝑥) = ∫
𝜕𝑈
𝑢(𝑦)𝑑`𝑥𝑈 (𝑦) = 𝐸𝑥[𝑢(𝑋𝜏𝑈 )],

so it is 𝑋 -harmonic!

2.3. The characteristic operator of a diffusion. So far, the analogy should start to un-
fold: just as classical/weak harmonic functions are those satisfying a mean-value property
on balls, 𝑋 -harmonic functions satisfy a mean-value property with respect to 𝑋 . It turns
out that requiring a 𝐶2(Ω) function 𝑢 to satisfy a mean-value property on all compactly
supported balls in Ω implies Δ𝑢 = 0 on Ω. Similarly, 𝑋 -harmonic functions should satisfy
a certain PDE, as we’ll see.

Definition 2.4. The characteristic operator of 𝑋𝑡 is defined by

A𝑓 (𝑥) = lim
𝑈 ↓𝑥

𝐸𝑥[𝑓 (𝑋𝜏𝑈 )] − 𝑓 (𝑥)
𝐸𝑥[𝜏𝑈 ]

,

where the limit is taken over open sets𝑈1 ⊃𝑈2 ⊃ . . . with ∩𝑈𝑘 = {𝑥}.

For𝐶2 functions, this operator acts via a linear second order partial differential operator:

Theorem 2.5. If 𝑓 ∈𝐶2, then the limit A𝑓 exists for all 𝑥 ∈ R𝑛, and

A𝑓 =∑
𝑖

𝑏𝑖𝐷𝑖 𝑓 +
1
2∑𝑖, 𝑗
(𝜎𝜎𝑇 )𝑖 𝑗𝐷2

𝑖 𝑗 𝑓 .

Proof. See [Oks07, 7.5.4]. □

In fact, this operator gives a sort of “fundamental theorem of calculus” for diffusions,
known as the Dynkin formula.

Lemma 2.6. Let 𝑓 ∈𝐶2
0(R𝑛), 𝜏 a stopping time with 𝐸𝑥[𝜏] <∞. Then

𝐸𝑥[𝑓 (𝑋𝜏)] = 𝑓 (𝑥) + 𝐸𝑥 [∫
𝜏

0
A𝑓 (𝑋𝑠)𝑑𝑠] .

Also, note that if 𝑓 is 𝑋 -harmonic, then A𝑓 = 0, by definition; thus, the real challenge
is finding solutions to A𝑓 = 0 with a desired regularity.
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3. Existence and Regularity for the Dirichlet Problem

In this section, we’ll consider an elliptic operator

𝐿 = 𝑏𝑖(𝑥)𝐷𝑖 + 𝑎𝑖 𝑗(𝑥)𝐷2
𝑖 𝑗

on a domain Ω, and some boundary data 𝜑 ∈ 𝐶0(𝜕Ω). The corresponding Dirichlet prob-
lem is to find 𝑢 ∈𝐶2(Ω) such that

⎧⎪⎪⎨⎪⎪⎩

𝐿𝑢 = 0 on Ω

lim𝑥Ð→𝑦 𝑢(𝑥) = 𝜑(𝑦) for all 𝑦 ∈ 𝜕Ω.
.

We assume that we can choose 𝜎(𝑥) ∈ R𝑛 × R𝑛 such that 1
2𝜎(𝑥)𝜎(𝑥)𝑇 = (𝑎𝑖 𝑗(𝑥)) (e.g.

if 𝑎𝑖 𝑗 ∈ 𝐶2(Ω) and has bounded second partial derivatives), and that 𝑏 and 𝜎 satisfy the
conditions of 1.5. Thus, we can find a diffusion 𝑋𝑡 with

𝑑𝑋𝑡 = 𝑏 𝑑𝑡 + 𝜎 𝑑𝐵𝑡 ,

for 𝐵𝑡 𝑛-dimensional Brownian motion, with characteristic operator A = 𝐿.
3.1. Regular boundary points and the stochastic Dirichlet problem. Initially, let
us try to solve the following, weaker stochastic Dirichlet problem: given 𝜑 bounded and
measurable on 𝜕Ω, find an 𝑋 -harmonic function 𝑢 on Ω with lim𝑡↑𝜏𝐷 𝑢(𝑋𝑡) = 𝜑(𝑋𝜏Ω) a.s.
𝑄𝑥 , for all 𝑥 ∈ Ω.
Theorem 3.1 (Solution of the stochastic Dirichlet problem). Let 𝜑 be bounded measurable
on 𝜕Ω.

(a) (Existence) The function 𝑢(𝑥) B 𝐸𝑥[𝜑(𝑋𝜏Ω)] solves the stochastic Dirichlet problem.

(b) (Uniqueness) If𝑔 is a bounded function onΩwhich is𝑋 -harmonic and has lim𝑡↑𝜏Ω 𝑔(𝑋𝑡) =
𝜑(𝑋𝜏Ω) a.s. 𝑄𝑥 , then 𝑔(𝑥) = 𝑢(𝑥).

Proof. (a) It follows from 2.6 that 𝑢 is 𝑋 -harmonic. Thus, fix 𝑥 ∈ Ω, let {Ω𝑘} be an increas-
ing sequence of opens Ω𝑘 ⊂⊂ Ω with ∪𝑘Ω𝑘 = Ω. Define 𝜏𝑘 = 𝜏Ω𝑘

and 𝜏 = 𝜏𝐷 . Then, by the
strong Markov property,

𝑢(𝑋𝜏𝑘) = 𝐸𝑋𝜏𝑘 [𝜑(𝑋𝜏)] = 𝐸𝑥 [\𝜏𝑘(𝜑(𝑋𝜏)) ∣ℱ𝜏𝑘 ] = 𝐸𝑥[𝜑(𝑋𝜏) ∣ℱ𝜏𝑘 ],

so 𝑀𝑘 B 𝐸𝑥[𝜑(𝑋𝜏𝑘) ∣ ℱ𝜏𝑘 ] is a bounded discrete martingale. By the martingale conver-
gence theorem, we have

𝑢(𝑋𝜏𝑘) = 𝐸𝑥[𝜑(𝑋𝜏) ∣ℱ𝜏𝑘 ]Ð→ 𝜑(𝑋𝜏)

pointwise a.s. and in 𝐿𝑝(𝑄𝑥) for all 𝑝 <∞. Moreover, because 𝑁𝑡 = 𝑢 (𝑋max(𝜏𝑘 ,min(𝑡,𝜏𝑘+1)))−
𝑢(𝑋𝜏𝑘) is a martingale with respect to G𝑡 Bℱ𝜏𝑘∨(𝑡∧𝜏𝑘+1), the martingale inequality

𝑄𝑥 [ sup
𝜏𝑘≤𝑟≤𝜏𝑘+1

∣𝑢(𝑋𝑟) −𝑢(𝑋𝜏𝑘)∣ > 𝜖] ≤
1
𝜖2
𝐸𝑥 [∣𝑢(𝑋𝜏𝑘+1) −𝑢(𝑋𝜏𝑘)∣

2]Ð→ 0,
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as 𝑘 Ð→∞ for all 𝜖 > 0. Thus, 𝑢 satisfies the stochastic boundary condition as desired.

(b) If𝑔 is such a harmonic function, then𝑔(𝑥) = 𝐸𝑥 [𝑔(𝑋𝜏𝑘)], and the boundary condition
implies

𝑔(𝑥) = lim
𝑘Ð→∞𝐸

𝑥[𝑔(𝑋𝜏𝑘)] = 𝐸𝑥[𝜑(𝑋𝜏)]

by bounded convergence. □

Thus, we can always solve the stochastic Dirichlet problem somewhat explicitly. The
problem is that in general, the function𝑢 may not even be continuous, much less𝐶2! More
worryingly for now, the boundary condition need not always hold:

Example 3.1. Let 𝑋(𝑡) = (𝑋1(𝑡),𝑋2(𝑡)) solve 𝑑𝑋1 = 𝑑𝑡,𝑑𝑋2 = 0, so 𝑋(𝑡) = 𝑋(0) + (𝑡, 0),
𝑋(0) ∈ R2, 𝑡 ≥ 0. Define Ω to be

Ω = ((0, 1) × (0, 1)) ∪ ((0, 2) ∪ (0, 1/2)) ,

and let𝜑 be a continuous function on 𝜕Ω with𝜑 = 1 on {1}×[1/2, 1] and 0 on {2}×[0, 1/2]
and {0} × [0, 1]. Then,

𝑢(𝑡, 𝑥) = 𝐸𝑡,𝑥[𝜑(𝑋𝜏Ω] =
⎧⎪⎪⎨⎪⎪⎩

1 𝑥 ∈ (1/2, 1)
0 𝑥 ∈ (0, 1/2)

,

and for 𝑥 ∈ (1/2, 1)
lim
𝑡Ð→0+

𝑢(𝑡, 𝑥) = 1 ≠ 𝜑(0, 𝑥).

See [?]oksendal.

However, if the boundary is nice enough, we can sidestep this issue. First, a lemma.

Lemma 3.2. Let 𝐻 ∈ ∩𝑡>0ℳ𝑡 . Then 𝑄𝑥(𝐻) = 0 or 1.

Proof. For [ a bounded,𝑀∞-measurable r.v., we have by Feller continuity that [?]oksendal

∫
𝐻
[𝑑𝑄𝑥 = lim

𝑡Ð→0∫𝐻
\𝑡[𝑑𝑄

𝑥 = lim
𝑡Ð→0∫𝐻

𝐸𝑋𝑡 [[]𝑑𝑄𝑥 = 𝑄𝑥(𝐻)𝐸𝑥[[],

via approximating [ by continuous functions. Then, if [ = 𝐼𝐻 , this gives𝑄𝑥(𝐻) = 𝑄𝑥(𝐻)2,
whence the 0-1 law. □

Corollary 3.3. If 𝑦 ∈ R𝑛, then 𝑄𝑦[𝜏Ω = 0] is 0 or 1; a.a. paths 𝑋𝑡 starting from 𝑦 either stay
within Ω for a positive time or instantly leave.

Definition 3.4. A point 𝑦 ∈ 𝜕Ω is regular for Ω if 𝑄𝑦[𝜏Ω = 0].

This feels odd, because you might assume by symmetry that paths have even proba-
bilities of staying or leaving a domain, but it turns out that for infinitessimal behavior of
diffusions, this can’t happen!
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3.2. The Dirichlet problem for uniformly elliptic operators. While we can’t solve
the Dirichlet problem in general, let us try to find a solution 𝑢 ∈ 𝐶2 which has the right
boundary data at all regular boundary points: this is the generalized Dirichlet problem. As
a preliminary, it is the case that all Itô diffusions where 𝜎(𝑥) has a bounded inverse and
satisfying an integrability condition satisfy Hunt’s condition: every semipolar set for 𝑋𝑡 is
polar [Oks07, 9.2.12]. A semipolar (resp. polar) set is a measurable 𝐺 ⊂ R𝑛 such that for
all 𝑥 , 𝑄𝑥[𝜏𝐺 = 0] (resp. 𝑄𝑥[𝜏𝐺 < ∞]) is 0; i.e. for all starting points 𝑥 , 𝑋𝑡 does not hit 𝐺
immediately (resp. never hits 𝐺). Moreover, if 𝑈 ⊂ Ω is open and 𝐼 is the set of irregular
points of𝑈 , then 𝐼 is semipolar. With this, we get uniqueness for the generalized Dirichlet
problem!

Proposition 3.5. Suppose 𝜑 ∈𝐶0(𝜕Ω) is bounded, and𝑢 ∈𝐶2(Ω) is bounded with (i) 𝐿𝑢 = 0
and (ii) lim𝑥Ð→𝑦 𝑢(𝑥) = 𝜑(𝑦) for all regular 𝑦 ∈ 𝜕Ω. Then 𝑢(𝑥) = 𝐸𝑥[𝜑(𝑋𝜏Ω)].

Proof. Let Ω𝑘, 𝜏𝑘 be as above; by the Dynkin formula 2.6, we know 𝑢 is 𝑋 -harmonic and
𝑢(𝑥) = 𝐸𝑥[𝑢(𝑋𝜏𝑘)] for all 𝑥 ∈ 𝐷𝑘 and all 𝑘 . Now, as 𝑘 Ð→ ∞, 𝑋𝜏𝑘 Ð→ 𝑋𝜏 , so if 𝑋𝜏 is regular,
then𝑢(𝑋𝜏𝑘)Ð→ 𝜑(𝑋𝜏). By the above, we know the set of irregular points 𝐼 of 𝜕Ω is semipo-
lar, so in particular, it is polar, which means 𝑋𝜏 /∈ 𝐼 a.s. 𝑄𝑥 . Thus, bounded convergence
gives

𝑢(𝑥) = lim𝐸𝑥[𝑢(𝑋𝜏𝑘)] = lim𝐸𝑥 [𝜑(𝑋𝜏)] .

□

Finally, we can solve the generalized Dirichlet problem:

Theorem 3.6 (Generalized Dirichlet problem for uniformly elliptic operators). Assume 𝐿
is uniformly elliptic in Ω, and let 𝜑 ∈𝐶0(𝜕Ω) be bounded. Define

𝑢(𝑥) = 𝐸𝑥 [𝜑(𝑋𝜏)] .

Then 𝑢 ∈𝐶2+𝛼(Ω) for all 𝛼 < 1 and 𝑢 solves the generalized Dirichlet problem.

Proof. Recall from class (and life in general) that if 𝐵 ⊂⊂ Ω is an open ball, 𝑓 ∈𝐶0(𝜕𝐵), then
for all 𝛼 < 1, there exists 𝑢 ∈ 𝐶2+𝛼(𝐵) ∩𝐶0(𝐵) with 𝐿𝑢 = 0 and 𝑢 = 𝑓 on 𝜕𝐵. Moreover, if
𝐾 is a compact subset of 𝐵, by Schauder theory, there exists a constant 𝐶 only depending
on 𝐾 and 𝐿 such that

∥𝑢∥𝐶2+𝛼(𝐾) ≤𝐶 ∥𝑓 ∥𝐶0(𝜕𝐵) .

Now, by the previous proposition, we know 𝑢(𝑥) = ∫𝜕𝐵 𝑓 (𝑦)𝑑`𝑥(𝑦), where 𝑑`𝑥(𝑦) =
𝑄𝑥[𝑋𝜏𝐵 ∈ 𝑑𝑦] is the harmonic measure on 𝐵, so the Schauder estimates give

∣∫ 𝑓 𝑑`𝑥1 − ∫ 𝑓 𝑑`𝑥2∣ ≤𝐶 ∥𝑓 ∥𝐶0(𝜕𝐵) ∣𝑥1 − 𝑥2∣
𝛼

for all 𝑥1, 𝑥2 ∈ 𝐾 . As this holds for any 𝑓 ∈𝐶0(𝜕𝐵), we get that

∥`𝑥1 − `𝑥2∥ ≤𝐶 ∣𝑥1 − 𝑥2∣𝛼 ,
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so any bounded measurable function 𝑔 on 𝜕𝐵 has

𝑔(𝑥) = ∫ 𝑔(𝑦)𝑑`𝑥(𝑦) = 𝐸𝑥[𝑔(𝑋𝜏𝐵)]

in 𝐶𝛼(𝐾). Applying this to 𝑢(𝑥) = 𝐸𝑥[𝑢(𝑋𝜏𝑈 )], which holds for all 𝑈 ⊂⊂ Ω, we conclude
𝑢 ∈𝐶𝛼 for any compact subset of Ω. This allows us to solve, for any ball 𝐵 ⊂⊂ Ω, the prob-
lem 𝐿𝑣 = 0 and 𝑣 = 𝑢 on 𝜕𝐵; by uniqueness, this 𝑣 again has 𝑣(𝑥) = 𝑢(𝑥) = 𝐸𝑥[𝑢(𝑋𝜏𝐷)],
and now we can assume 𝑢 ∈𝐶2+𝛼 for all compact subsets of Ω, so 𝑢 ∈𝐶2+𝛼(Ω).

To get the boundary condition, see [Dyn65, Theorem 13.3]: the idea is that by the theory
of parabolic differential equations, one can show that 𝑥 ↦ 𝐸𝑥[𝑓 (𝑋𝑡)] is continuous for all
𝑡 ≥ 0 and all bounded measurable functions 𝑓 . Under this condition, 𝐸𝑥[𝜑(𝑋𝜏)] Ð→ 𝜑(𝑦)
as 𝑥 Ð→ 𝑦 for all regular 𝑦 ∈ 𝜕Ω and 𝜑 bounded. □
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