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1. Introduction

The Sherrington-Kirkpatrick model is a ubiquitous mathematical model of a spin glass,
and is especially amenable to direct analysis. Unlike the spherical spin glasses studied in
class, the SKmodel is described by a random distribution on the 𝑛-dimensional hypercube
{−1, +1}𝑛.

Definition 1.1. The Sherrington-Kirkpatrick Gibbs measure on {−1, +1}𝑛 is

(1) 𝜇𝐀(𝐱) =
1

𝑍(𝛽,𝐀)
exp(

𝛽
2⟨𝐀, 𝐱

⊗2⟩),

where 𝐀 ∼ GOE(𝑛) and 𝛽 ≥ 0 is inverse temperature.

Observe that this is effectively the Gibbs measure associated to a 2-spin Hamiltonian,
where theGOEmatrix absorbs the usual𝑛−(𝑝−1)/2 scaling factor and the referencemeasure
on {−1, +1}𝑛 is just the uniform one on vertices.
As might be expected, being able to sample from this random landscape is a question of

foundational interest in statistical physics and high-dimensional optimization. Physicists
expect fast sampling should only be possible in the “high-temperature” regime (when
𝛽 < 1), whereas there should be a hardness threshold in the “low-temperature” regime
(𝛽 > 1). This should be intuitive: in the more homogenized high-temperature setting, this
says there should not be such severe bottlenecks in the energy landscape that algorithms
likeGibbs sampling/Glauber dynamics get stuck. However, in the low-temperature setting
(the limit 𝛽 → ∞ of which corresponds to optimization of the Hamiltonian), we are
hopeless.
Much work has gone into studying or constructing fast sampling algorithms for Eq. (1).

This mixing time is usually measured by algorithmic complexity needed to achieve a
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certain “closeness” to stationarity. Here we will consider the normalized 2-Wasserstein
distance:

𝑊2,𝑛(𝜇, 𝜈)2 = inf
𝜋∈𝒞(𝜇,𝜈)

1
𝑛 𝐄𝜋‖𝐗 − 𝐘‖22,

and ask that our sampling algorithm’s output, with law 𝜇alg𝐀 should satisfy𝑊2,𝑛(𝜇
alg
𝐀 , 𝜇𝐀) =

𝑜𝑛(1) in probability. Other metrics, such as Total Variation (TV), are also used in the
literature.
In addition, a good sampling algorithm should be stable, in the sense of its output

varying “continuously” with its inputs. We can formalize this for the setting of our
randomized SK sampling algorithms as follows: consider a family {𝒜𝑛} of randomized
sampling algorithms,

𝒜𝑛∶ (𝐀, 𝛽, 𝜔) ↦ 𝒜𝑛(𝐀, 𝛽, 𝜔);

Let 𝐀,𝐀′
iid
∼ GOE(𝑛) and for 𝑠 ∈ [0, 1], define the perturbation 𝐀𝑠 ≔ √1 − 𝑠2𝐀 + 𝑠𝐀′ of

𝐴. Define, for fixed (𝐀𝑠, 𝛽), the (random) law of the perturbed algorithm

𝜇alg𝐀𝑠,𝛽 ≔ ℒ(𝒜𝑛(𝐀, 𝛽, 𝜔)), 𝜔 y (𝐀𝑠, 𝛽).

Definition 1.2. {𝒜𝑛} is disorder stable at inverse temperature 𝛽 if

lim
𝑠→0

p-lim
𝑛→∞

𝑊2,𝑛(𝜇
alg
𝐀,𝛽, 𝜇

alg
𝐀𝑠,𝛽) = 0.

It is temperature stable at inverse temperature 𝛽 if

lim
𝛽′→𝛽

p-lim
𝑛→∞

𝑊2,𝑛(𝜇
alg
𝐀,𝛽, 𝜇

alg
𝐀,𝛽′) = 0.

Stability has obvious practical benefits, but one additional boon is that the existence or
non-existence of stable sampling algorithms in different temperature ranges lets us prove
stability of the underlying SK measure; we will return to this point in Section 3.
Much of the literature on fast SK sampling focuses on Markov chain-based methods,

such as Gibbs sampling (known as Glauber dynamics in the physics literature). This algo-
rithm computes the conditional distribution of the coordinates of a sample and iteratively
updates them, and traditional techniques for controlling its mixing time (such as the
Dobrushin condition) only work in the asymptotically vanishing interval of 𝛽 ≤ 𝑂(𝑛−1/2)
[AH87]. More recent work on logarithmic Sobolev inequalities for the SK Gibbs measure
in the higher temperature regime of 𝛽 < 1/4 proves stronger dimensionless bounds for
the spectral gap of Gibbs sampling [BB19; EKZ21]. This implies Gibbs sampling mixes in
𝑂(𝑛2) flips in TV distance when 𝛽 < 1/4. In fact, it is possible to improve this to𝑂(𝑛 log𝑛)
via some modifications to the argument [Ana+21].
While these Markov chain methods are both well-motivated and computationally

tractable, other approaches are possible. In this report, we will describe a stable sampling
algorithm for Eq. (1) constructed in [EMS24], which is based on a different sampling
framework inspired by stochastic localization and is highly amenable to direct analysis.
We will first discuss the idea of stochastic localization and how it gives a natural way of
constructing sampling algorithms, and then reproduce their proof that this algorithm has
fast mixing in 2-Wasserstein distance for all 𝛽 < 1/2 and is both disorder and temperature
stable in this range. Later, this guarantee was improved to show the [EMS24] algorithm
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has fast mixing for all 𝛽 < 1 via careful—but direct—analysis on the local convexity of
the TAP free energy [Cel22].

Remark 1.3. The other major result from this paper is that no stable algorithm for 𝛽 > 1
can exist. While this fact is of immense theoretical importance, it follows from a direct
analysis of the Parisi formula, and is conceptually separate from the stochastic localization
theory and the latter’s connection to sampling algorithms. Thus, we’ve chosen to focus
on the algorithm guarantees in the high temperature regime in this report.

2. Overview of Stochastic Localization

Stochastic localization is a general sampling technique involving a sequence of random
measures 𝜇𝑡. Now, suppose that we want to sample from some distribution 𝜇 in 𝐑𝑛.

Definition 2.1. Let 𝐱∗ ∼ 𝜇. A stochastic localization {𝜇𝑡}𝑡≥0 is a stochastic process valued
in probability measures on 𝐑𝑛 such that

(1) (Localization) As 𝑡 → ∞, 𝜇𝑡 ⟹ 𝛿𝐱∗. More precisely, for any bounded and
continuous function 𝑓,

∫𝑓(𝐱)𝜇𝑡(𝑑𝐱) → ∫𝑓(𝐱)𝜇(𝑑𝐱)

in distribution.
(2) (Martingale) 𝜇𝑡 is a continuous-time martingale.

To be more precise, we define the expectation of a random measure as follows:

Definition 2.2 (Intensity Measure). If 𝜉 is a random measure on 𝐑𝑛, then there exists a
measure 𝐄𝜉, known as the intensity measure, such that

𝐄[∫𝑓(𝐱)𝜉(𝑑𝐱)] = ∫𝑓(𝐱)𝐄 𝜉(𝑑𝐱)

for all measureable functions 𝑓.

This definition can be extended to conditional expectation in the usual way. So, the
martingale condition translates to

𝐄(𝜇𝑡|{𝜇𝑟}0≤𝑟≤𝑠) = 𝜇𝑠
for all 𝑠 ≤ 𝑡. For a more rigorous treatment of randommeasures, we refer the reader to
[Kal17]. We now present the general notion of stochastic localization [Mon23], and then
specify it to the problem at hand.

Definition 2.3. An observation process (𝐘𝑡)𝑡≥0 with respect to a random variable 𝐱∗ ∼ 𝜇
satisfies the property that for all 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑘, we have the following equality in
distribution for 𝑖 = 2, 3,… , 𝑘 ∶

ℒ(𝐘𝑡𝑖−1|𝐱∗, 𝐘𝑡𝑖,… , 𝐘𝑡𝑘) = ℒ(𝐘𝑡𝑖−1|𝐘𝑡𝑖).
Equivalently,

𝐱∗, 𝐘𝑡𝑘, 𝐘𝑡𝑘−1,… , 𝐘𝑡1
forms a Markov chain.
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The Markov chain condition is one way to formalize the notion of the observations
𝐘𝑡 becoming more “informative” about 𝑥∗ as 𝑡 grows. In other words, each 𝐘𝑡 can be
viewed as a noisy measurement of 𝜇 which gets less noisy as 𝑡 → ∞. To connect back to
stochastic localization, we have the following claim:

Claim 2.4. Let 𝐘𝑡 be an observation process with respect to 𝐱∗. Then,

𝜇𝑡 = ℒ(𝐱∗|𝐘𝑡)

is a stochastic localization.

For the problem of Gibbs sampling, define the observation process

𝐘𝑡 = 𝑡𝐱∗ +𝑊𝑡,

where𝑊𝑡 is a standard Brownian motion independent of 𝑥∗, and define 𝜇𝑡 as in Claim
2.4. We can also express the observation process as

𝐘𝑡
𝑑
= 𝑡𝐱∗ +√𝑡𝐙

where 𝐙 is a Normal random variable in 𝐑𝑛 with mean 0 and covariance matrix 𝐈𝑛,
independent of 𝐱∗. By Bayes’ rule, we can directly calculate the density 𝜇𝑡, as follows:

𝜇𝑡(𝑑𝐱) ∝ 𝜑(
𝐘𝑡 − 𝑡𝐱
√𝑡

)𝜇(𝑑𝐱)

∝ exp(−12
‖
‖‖‖
𝐘𝑡 − 𝑡𝐱
√𝑡

‖
‖‖‖

2

2

)𝜇(𝑑𝐱)

= exp(− 1
2𝑡‖𝐘𝑡 − 𝑡𝐱‖22)𝜇(𝑑𝐱)

∝ exp(⟨𝐘𝑡, 𝐱⟩ −
𝑡
2‖𝐱‖

2
2)𝜇(𝑑𝐱).

So, for this particular observation process, 𝜇𝑡 is a random tilt of 𝜇.We see that as 𝑡 tends
to infinity, 𝜇𝑡 ⟹ 𝛿𝐱∗. Lastly, the measure we want to sample from is the SK Gibbs
measure, so we set 𝜇 = 𝜇𝐀 and obtain

𝜇𝑡(𝑑𝐱) ∝ exp(⟨𝐘𝑡, 𝐱⟩ −
𝑡
2‖𝐱‖

2
2) exp(

𝛽
2⟨𝐀, 𝐱

⊗2⟩) ∝ exp(⟨𝐘𝑡, 𝐱⟩ +
𝛽
2⟨𝐀, 𝐱

⊗2⟩).

The − 𝑡
2
‖𝐱‖22 term is absorbed into the normalization because 𝜇𝐀 is supported on the set

of vertices of the hypercube, which has constant norm.
From these definitions alone, it may not be clear why stochastic localization is useful,

especially in the context of Gibbs sampling. It seems like we’ve turned the problem of
sampling from𝜇𝐀 into a problemof sampling𝐘𝑡,which depends on𝜇𝐀. In addition, (𝜇𝑡)𝑡≥0
is a sequence of random measures, which adds another layer of complexity. However,
the following connection to the theory of stochastic differential equations makes it clear
why this idea is useful:
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Proposition 2.5. [LS77] Suppose 𝜇 = 𝜇𝐀 has finite second moment and let 𝐱∗ ∼ 𝜇. Then
(Y𝑡)𝑡≥0 with initial condition 𝑌0 = 0 is the unique solution of the SDE

dY𝑡 =m(Y𝑡; 𝑡) d𝑡 + dB𝑡
where

m(𝐘𝑡; 𝑡) = 𝐄𝜇𝑡 = 𝐄[𝐱∗||𝑡𝐱∗ +√𝑡𝐙 = 𝐘𝑡]

is the posterior mean of 𝜇 given the observation 𝐘𝑡.

Thus, to obtain samples for𝜇, one could discretize the SDE and output𝐘𝑇/𝑇 or𝐦(𝐘𝑇; 𝑇)
for some large 𝑇.We focus on the latter option, since it is used in Algorithms 1 and 2
from [EMS24]. For consistency with the notation of the two algorithms in the next
section, we change our notation slightly, emphasizing the randomness from 𝐀, the GOE
matrix that parametrizes the SK Gibbs measure. From now on, we will write𝐦(𝐀,𝐘𝑡)
instead of𝐦(𝐘𝑡; 𝑡) to denote the mean of 𝜇𝑡. Now, we provide a bound on the normalized
Wasserstein 2-distance between𝐦(𝐀,𝐘𝑡) and 𝜇𝐀, by way of two lemmas.

Lemma 2.6. [Eld19] For all 𝑡 > 0,

𝐄Cov(𝜇𝑡) ⪯
1
𝑡 𝐈𝑛,

where⪯ is the Loewner ordering, defined by 𝐴 ⪯ 𝐵 ⟺ 𝐵−𝐴 is positive semi-definite, and
the covariance matrix of 𝜇𝑡 is defined as

Cov(𝜇𝑡) = ∫𝐱⊗2𝑑𝜇𝑡(𝐱) − (∫𝐱𝑑𝜇𝑡(𝐱))
⊗2

Proof. Using the representation 𝐘𝑡 = 𝑡𝐱∗ +√𝑡𝐙, we have

𝐄Cov(𝜇𝑡) ⪯ 𝐄[(𝐱∗ −
𝐘𝑡
𝑡 )

⊗2
] = 𝐄[( 𝐙

√𝑡
)
⊗2

] = 1
𝑡 𝐄[𝐙

⊗2] = 1
𝑡 𝐈𝑛.

//

Lemma 2.7. For all 𝑡 > 0,

𝑊2,𝑛(𝜇𝐀, ℒ(𝐦(𝐀,𝐘𝑡)))
2 ≤ 1

𝑡 .

Proof. Recall that a positive semi-definite (PSD) matrix must have all nonnegative eigen-
values. The trace, being the sum of the eigenvalues, must also be nonnegative. By
Lemma 2.6, 1

𝑡
𝐈𝑛 − 𝐄Cov(𝜇𝑡) is PSD and thus

tr(𝐄Cov(𝜇𝑡)) ≤ tr(1𝑡 𝐈𝑛) =
𝑛
𝑡 ,

due to the trace being additive. We further develop the LHS. By linearity, we can switch
the trace and the expectation. Then, we can write the trace of the covariance matrix as an
expected norm, as follows:

tr(𝐄Cov(𝜇𝑡)) = 𝐄[tr Cov(𝜇𝑡)] = 𝐄[𝐄𝐱∼𝜇𝑡[‖𝐱 −𝐦(𝐀,𝐘𝑡)‖
2
2]].



6 PETER LUO AND RUSHIL MALLARAPU

Pattern-matching to the Wasserstein distance, we see that

𝐄[𝑊2,𝑛(𝜇𝑡, 𝛿𝐦(𝐀,𝐘𝑡))
2] = 𝑛𝐄[ inf

𝜋∈𝒞(𝜇𝑡,𝛿𝐦(𝐀,𝐘𝑡))
𝐄𝜋‖𝐗 − 𝐘‖22]

≤ 𝑛𝐄[𝐄𝐱∼𝜇𝑡[‖𝐱 −𝐦(𝐀,𝐘𝑡)‖
2
2]].

Lastly, recall the density

𝜇𝑡(𝑑𝐱) ∝ exp(⟨𝐘𝑡, 𝐱⟩ +
𝛽
2⟨𝐀, 𝐱

⊗2⟩) ⟹ 𝜇0(𝑑𝐱) ∝ exp(
𝛽
2⟨𝐀, 𝐱

⊗2⟩),

so 𝜇0 = 𝜇𝐴. Since 𝜇𝑡 is a martingale, then we have 𝐄𝜇𝑡 = 𝜇0 = 𝜇𝐀. Jensen on the
convex function of measures (𝑝, 𝑞) ↦ 𝑊2,𝑛(𝑝, 𝑞)2 gives the following upper-bound on the
quantity of interest:

𝑊2,𝑛(𝜇𝐀, ℒ(𝐦(𝐀,𝐘𝑡)))
2 = 𝑊2,𝑛(𝐄𝜇𝑡, 𝐄 𝛿𝐦(𝐀,𝐲𝑡))

2

≤ 𝐄[𝑊2,𝑛(𝜇𝑡, 𝛿𝐦(𝐀,𝐲𝑡))
2].

Combining this inequality with the bounds we developed earlier yields the desired result.
//

This lemma implies that𝐦(𝐀,𝐘𝑡) converges in distribution to𝜇𝐀,which is an important
theoretical guarantee.
Lastly, we address two practicality concerns regarding the computation of 𝐦(𝐀,𝐘𝑡).
(1) (Discretization) The first step in obtaining our samples was to discretize the SDE

from 2.5. Which numerical method is best-suited for this discretization? While
there are many methods available, the basic Euler discretization is used in Algo-
rithm 2.

(2) (Estimating𝐦(𝐀,𝐘𝑡)) It is computationally intractable to sample from𝐦(𝐀,𝐘𝑡) =
𝐄𝜇𝑡.However, there is a known algorithm to estimate this mean accurately, called
Approximate Message Passing (AMP).

Theorem 2.8. [DAM16] The AMP algorithm gives an estimate �̂�AMP(𝐲) such that

‖𝐦(𝐀, 𝐲) − �̂�AMP(𝐲)‖22/𝑛 = 𝑜𝑛(1)

These two techniques are key to the algorithms that follow.

3. The Sampling Algorithm

With this theoretical background in hand, we can describe the desired sampling algo-
rithm. The first, an auxiliary algorithm, implements an efficient sampler of the conditional
mean of the linear-tilt localization from the previous section.
The first step runs an approximate message passing (AMP) algorithm to produce a

rough estimate of the mean. The second step performs natural gradient descent (NGD)
to minimize the Thouless-Anderson-Palmer free energy—the ℱTAP term—minimizers
of which correspond to means of the Gibbs free energy. As we will see in the proof, this
two-step construction is primarily considered for technical reasons. State analysis (for
the AMP loop) and convergence estimates (for the NGD loop) interact particularly well,
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Algorithm 1:Mean of the tilted Gibbs measure [EMS24, Alg. 1]
Input: 𝐀 ∈ 𝐑𝑛×𝑛, 𝐲 ∈ 𝐑𝑛, 𝛽, 𝜂 > 0, 𝑞 ∈ (0, 1), 𝐾AMP, 𝐾NGD

1 �̂�−1 = 𝐳0 = 0;
2 for 𝑘 = 0,… , 𝐾AMP − 1 do
3 �̂�𝑘 = tanh(𝐳𝑘);

4 𝑏𝑘 =
𝛽2

𝑛
∑𝑛

𝑖=1(1 − tanh2(𝑧𝑘𝑖 ));
5 𝐳𝑘+1 = 𝛽𝐀�̂�𝑘 + 𝐲 − 𝐛𝑘�̂�𝑘−1;
6 end
7 𝐮0 = 𝐳𝐾AMP;
8 for 𝑘 = 0,… , 𝐾NGD − 1 do
9 𝐮𝑘+1 = 𝐮𝑘 − 𝜂 ⋅ ∇ℱTAP(�̂�+,𝑘; 𝐲, 𝑞);
10 �̂�+,𝑘+1 = tanh(𝐮𝑘+1);
11 end
12 return �̂�+,𝐾NGD

but the authors of [EMS24] expect similar performance would be achieved by simply
running more AMP iterations.
The main loop, Algorithm 2, implements an Euler discretization of the stochastic

localization SDE, using Algorithm 1 to update the drift coefficients while adding in
Gaussian noise. The parameters 𝑞∗ referenced are constants which can be precomputed
from knowledge of 𝛽 and the timestep 𝛿, and are only used for technical reasons.

Algorithm 2: Sampling from Gibbs measure [EMS24, Alg. 2]
Input: Data 𝐀 ∈ 𝐑𝑛×𝑛, parameters 𝛽, 𝜂, 𝐾AMP, 𝐾NGD, 𝐿, 𝛿

1 �̂�0 = 0;
2 for ℓ = 0,… , 𝐿 − 1 do
3 𝐰ℓ+1 ∼ 𝓝(0, 𝐈𝑛) ;
4 �̂�(𝐀, �̂�ℓ) = Alg. 1(𝛽, 𝜂, 𝑞∗(𝛽, ℓ𝛿));
5 �̂�ℓ+1 = �̂�ℓ + �̂�(𝐀, �̂�ℓ)𝛿 + √𝛿𝐰ℓ+1;
6 end
7 �̂�(𝐀, �̂�𝐿) = Alg. 1(𝛽, 𝜂, 𝑞∗(𝛽, (𝐿 − 1)𝛿));
8 {𝑥alg𝑖 }𝑖≤𝑛 drawn conditionally independent with 𝐄[𝑥

alg
𝑖 ∣ 𝐲, {𝐰ℓ}] = �̂�𝑖(𝐀, �̂�ℓ);

9 return 𝐱alg

The positive result of [EMS24] is that for 𝛽 < 1/2, Algorithm 2 converges and is disorder
and temperature stable. Namely, we have

Theorem 3.1. For any 𝜖 > 0, 𝛽0 < 1/2, there exist parameters independent of 𝑛 such that
for 𝛽 ≤ 𝛽0, the law 𝜇alg𝐀 of the output of Algorithm 2 has

𝑊2,𝑛(𝜇
alg
𝐀 , 𝜇𝐀) ≤ 𝜖 w.p. 1 − 𝑜𝑛(1) over 𝐀 ∼ GOE(𝑛),
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with total complexity 𝑂(𝑛2) [EMS24, Thm. 2.1].

Theorem 3.2. For any 𝛽 and fixed parameters, Algorithm 2 is stable with respect to disorder
and temperature [EMS24, Thm. 2.3].

Asmentioned above, one benefit of Theorems 3.1 and 3.2 is that we can transfer stability
of the sampling algorithm to stability of the Gibbs measure itself:

Corollary 3.3. For any 𝛽 < 1/2, we have
1. lim𝑠→0 p-lim𝑛→∞𝑊2,𝑛(𝜇𝐀,𝛽, 𝜇𝐀𝑠,𝛽) = 0.

2. lim𝛽′→𝛽 p-lim𝑛→∞𝑊2,𝑛(𝜇𝐀,𝛽, 𝜇𝐀,𝛽′) = 0.

Proof. By the triangle inequality, we can write

𝑊2,𝑛(𝜇𝐀,𝛽, 𝜇𝐀𝑠,𝛽) ≤ 𝑊2,𝑛(𝜇𝐀,𝛽, 𝜇
alg
𝐀,𝛽) + 𝑊2,𝑛(𝜇

alg
𝐀,𝛽, 𝜇

alg
𝐀𝑠,𝛽) + 𝑊2,𝑛(𝜇

alg
𝐀𝑠,𝛽, 𝜇𝐀𝑠,𝛽),

and similarly for𝑊2,𝑛(𝜇𝐀,𝛽, 𝜇𝐀,𝛽′). By Theorem 3.1, the first and third terms go to 0 in
the 𝑛 → ∞, and by Theorem 3.2, the second term vanishes in the disorder/temperature
limit. //

Note that this stability result makes no reference to the algorithm, but the proof uses
this algorithm’s existence and properties in a fundamental way, similar to what we’ve
seen in class for Langevin dynamics.

3.1. Proof of Theorem 3.1. The key idea behind showing convergence of Algorithm 2
is that the AMP and NGD iterations of Algorithm 1 is a good enough approximation of
𝐦(𝐀, 𝐲). In particular, we have the following proposition:

Proposition 3.4. For 𝛽 < 1/2, 𝑇 > 0, there exists a constant 𝐶 < ∞ such that
1
√𝑛

‖�̂�(𝐀, �̂�𝐿) − 𝐦(𝐀, 𝐲𝑇)‖ ≤ 𝐶√𝛿 + 𝑜𝑛(1)

with probability 1 − 𝑜𝑛(1).

Proof. See [EMS24, p. 4.14]. The key inputs are Lipschitz continuity of the output of the
AMP algorithm and gradient bounds on the TAP Hessian; the latter is where the 𝛽 < 1/2
assumption is used. The rest of the proof is heavily computational and relies on analyzing
the convergence rate of the NGD loop to show that after sufficiently many iterations, we
can guarantee closeness of the true conditional mean𝐦 and the computed mean �̂� with
high probability. //

With this, the proof is relatively simple. We will need the following lemma to control
the rounding step in line 8 of Algorithm 2.

Proposition 3.5. Let 𝜇1, 𝜇2 be distributions on [−1, 1]𝑛,𝐦𝑖 ∼ 𝜇𝑖, and 𝐱𝑖 ∈ {±1}𝑛 random-
ized roundings of𝐦𝑖, for 𝑖 = 1, 2. Then

𝑊2,𝑛(ℒ(𝐱1), ℒ(𝐱2)) ≤ 2√𝑊2,𝑛(𝜇1, 𝜇2).
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Proof. Let (𝐦1,𝐦2) be drawn according to a𝑊2,𝑛-optimal coupling of (𝜇1, 𝜇2). Denote
by𝐦𝑗

𝑖 the coordinates of this vector. Now, we can explicitly couple the roundings 𝐱
𝑗
𝑖 of

𝐦𝑗
𝑖 by picking 𝑈1,… ,𝑈𝑛

iid
∼ Unif([0, 1]) and setting

𝐱𝑗𝑖 = {+1 𝑈𝑗 ≤
1+𝐦𝑗

𝑖
2

,
−1 else,

for 𝑖 = 1, 2 and 1 ≤ 𝑗 ≤ 𝑛. Then,

1
𝑛 𝐄[‖𝐱1 − 𝐱2‖2 ∣ (𝐦1,𝐦2)] =

2
𝑛

𝑛
∑
𝑖=1
|𝐦𝑗

1 −𝐦𝑗
2| ≤ 2√

1
𝑛‖𝐦1 −𝐦2‖2

the first line by choosing a Uniform coupling and the second by Cauchy-Schwarz. Tak-
ing expectations of both sides (and using Jensen’s inequality), we have upper bounded
𝑊2,𝑛(ℒ(𝐱1), ℒ(𝐱2)) by 2√𝑊2,𝑛(𝜇1, 𝜇2), thus completing the proof. //

Finally, we can present the proof of algorithmic convergence

Proof of Theorem 3.1. Writing𝑇 for the total time to run the stochastic localization process
and 𝛿 for the discretized timestep, to be determined, let 𝐿 = 𝑇/𝛿, 𝐦 = 𝐦(𝐀, 𝐲𝑇) and
�̂� = �̂�(𝐀, �̂�𝐿). Taking laws conditional on 𝐀, we have

𝐄𝑊2,𝑛(𝜇𝐀, ℒ(�̂�)) ≤ 𝐄𝑊2,𝑛(𝜇𝐀, ℒ(𝐦)) + 𝐄𝑊2,𝑛(ℒ(𝐦), ℒ(�̂�))

≤ 𝑇−1/2 + 𝐶√𝛿 + 𝑜𝑛(1),

the first term by Lemma 2.7, and the second by Proposition 3.4. For any 𝜖 > 0, we can
take 𝑇, 𝑛 sufficiently large and 𝛿 sufficiently small to get

𝐄𝑊2,𝑛(𝜇𝐀, ℒ(�̂�)) ≤ 𝜖2/4,

whence by Proposition 3.5,

𝐄𝑊2,𝑛(𝜇𝐀, 𝜇
alg
𝐀 ) = 𝐄𝑊2,𝑛(𝜇𝐀, ℒ(𝐱alg)) ≤ 𝜖.

Ergo, by Markov’s inequality, we can pick the algorithm parameters so𝑊2,𝑛(𝜇𝐀, 𝜇
alg
𝐀 ) ≤ 𝜖

holds whp, thus completing the proof. //

3.2. Proof of Theorem 3.2. While the convergence of Algorithm 2 relied crucially on
properties of the stochastic localization process, the stability is reliant on a more direct
observation: Algorithm 2 is given by iterative updates which are “sufficiently Lipschitz.”
In particular, we have the following general proposition:

Proposition 3.6. Suppose an algorithm𝒜 is given iteratively: for 0 ≤ 𝑘 ≤ 𝐾 − 1

𝐳𝑘+1 = 𝐺𝑘((𝐳𝑗, 𝛽𝐀𝐦𝑗, 𝐀𝐦𝑗, 𝛽2𝐦𝑗,𝐰𝑗)0≤𝑗≤𝑘),

𝐦𝑘 = 𝜌𝑘(𝐳𝑘),
𝒜(𝐀, 𝛽, 𝜔) ≔ 𝐦𝐾,
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where𝜔 = (𝐰0,… ,𝐰𝐾−1), 𝐳0 and𝐀are independent, and the functions𝐺𝑘∶ (𝐑𝑛)5𝑘+5 → 𝐑𝑛,
𝜌𝑘∶𝐑𝑛 → [−1, 1]𝑛 are 𝐿0-Lipschitz for an 𝑛-independent constant. Then𝒜 is disorder and
temperature stable.

Proof. See [EMS24, p. 5.1]. The idea is to first use standardmatrixmultiplication estimates
to establish that the inputs of 𝐺𝑘 and 𝜌𝑘 are Lipschitz (plus dimensional terms) with
respect to𝐦 and 𝛽, with high probability. This lets us analyze the error sequence

𝐴𝑘 =
1
√𝑛

max
𝑗≤𝑘

‖
‖𝐳

𝑗+1(𝐀0, 𝛽) − 𝐳𝑗+1(𝐀𝑠, ̃𝛽)‖‖,

which with high probability satisfies 𝐴0 = 0 and
𝐴𝑘+1 ≤ 𝐿0𝑘1/2𝐶(𝐴𝑘 + 𝑠 + |𝛽 − ̃𝛽|),

for some constant 𝐶 depending on 𝛽. Thus, taking expectations and letting 𝑛 get large
enough, we can conclude that the temperature and disorder limits vanish, as claimed. //

As expected, the proof of stability amounts to showing Algorithm 2 follows the format
of Proposition 3.6.

Proof of Theorem 3.2. We can write Algorithm 2 in the following form. Let ℓ ∈ {0,… , 𝐿−
1} index the outer iterations; for each ℓ, the Algorithm 1 subroutine works as follows:

1. for 𝑘 = 0,… , 𝐾AMP − 1, run the AMP loop:

𝐳ℓ,𝑘+1 = 𝛽𝐀 tanh(𝐳ℓ,𝑘) + �̂�ℓ − tanh(𝐳ℓ,𝑘−1)
𝛽2

𝑛

𝑛
∑
𝑖=1

tanh′(𝑧ℓ,𝑘𝑖 ).

2. For 𝑘 = 𝐾AMP,… , 𝐾AMP + 𝐾NGD − 1, run
𝐳ℓ,𝑘+1 = 𝐳ℓ,𝑘 + 𝜂[𝛽𝐀 tanh(𝐳ℓ,𝑘) + 𝐲ℓ − 𝐳ℓ,𝑘 − 𝛽2(1 − 𝑞ℓ) tanh(𝐳ℓ,𝑘)].

3. Finally, update

�̂�ℓ+1 = �̂�ℓ + �̂�ℓ,𝐾AMP+𝐾NGD𝛿 + √𝛿𝐰ℓ+1.
Thus, these are a sequence of iterative updates indexed by (ℓ, 𝑘), with randomness 𝜔 =
(𝐰1,… ,𝐰𝐿), and 𝜌ℓ,𝑘(𝐳) = tanh(𝐳). Observe at each step that the functions 𝐺ℓ,𝑘 defined
by these update steps are Lipschitz, so ̂𝑦ℓ is updated in a Lipschitz way on the previous
iterates. In fact, the hard part of the argument involves showing the Euler discretization
updates are Lipschitz, which by unwinding the recursion can be done controlling the
Lipschitz modulus of functions related to the AMP and NGD updates. Overall, we see
that Algorithm 2 satisfies the conditions of Proposition 3.6, whence it is disorder and
temperature stable. //
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