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1. The Poincaré inquality and Riemann surface theory

Let 𝑋 be a compact, connected Riemann surface, with a fixed area form 𝜔. For a (smooth)
function 𝑓 on 𝑋, we can define the 𝐿2 norm and Dirichlet (semi)norm as

‖𝑓‖𝐿2 ≔ (∫
𝑋
|𝑓|2𝜔)

1/2

, ‖𝑓‖𝐷 ≔ (∫
𝑋
|𝐷𝑓|2𝜔)

1/2

,

where 𝐷𝑓 is the gradient of 𝑓. The Poincaré inequality relates these two quantities:

Proposition 1.1. There exists a constant 𝐶 depending on 𝑋 and 𝜔 such that for all 𝑓 ∈ Ω0(𝑋; 𝐑),

‖𝑓‖𝐿2 ≤ 𝐶‖𝑓‖𝐷 if ∫
𝑋
𝑓𝜔 = 0.

In class, we proved this by first examining this inequality on the sphere, generalizing to balls
with various area forms via a reflection principle and patching these together for an arbitrary
compact connected Riemann surface. Moreover, this is a key non-formal input in establishing
the “main theorem” of Riemann surfaces, which we leveraged to great effect in constructing
the theory of divisors.
This is one indication that this kind of inequality, bounding the 𝐿2 norm of a function by the 𝐿2

norm of its gradient, has wide-ranging applications. In fact, more general Poincaré inequalities
are of critical importance to a wide range of subfields, and the constants in these inequalities
carry significant geometric content. In this expository paper, I’ll discuss the importance of the
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Poincaré inequality to the analytic theory of Riemann surfaces, present and discuss proofs of
some forms of this inequality, and give a brief overview of the connection between Poincaré
constants and the geometry of their domains.
These is my final paperer for Math 213B, a Spring 2024 course on Riemann surfaces taught

by Peter Kronheimer. All mistakes are my own; please reach out to me if you spot anything!

1.1. Relation to the Main Theorem. Recall from lecture the “Main Theorem” of Riemann
surfaces was about solving the integral Poisson equation in differential forms. Much of the
later theory (Riemann-Roch, etc.) stemmed from this result:

Theorem 1.2. Let 𝜌 be a 2-form on 𝑋. Then there exists a solution 𝜙 to Δ𝜙 = 𝜌 iff the integral of
𝜌 on 𝑋 is 0, and the solution is unique up to constants.

Here Δ is the geometers’ Laplacian,1 Δ = 2𝑖𝜕𝜕. Of course, if 𝜌 = Δ𝜙, then ∫𝑋 𝜌 = 0 by Stokes’
theorem (𝑋 is naturally a closed 2-manifold). Moreover, the only harmonic functions on 𝑋 are
constant, by the maximum principle. Thus, the hard part of this main theorem is the converse
direction. Let us recap the proof from lecture, to see the Poincaré inequality in action.

Proof sketch. First, let 𝐻 = Ω0(𝑋; 𝐑)/𝐑 be the space of smooth functions on 𝑋, modulo con-
stants, and 𝜌 a fixed 2-form with ∫𝑋 𝜌 = 0. For 𝜙 ∈ 𝐻, define

𝐿(𝜙) = ⟨𝜙, 𝜙⟩𝐷 − 2∫
𝑋
𝜙𝜌.

The key observation is that 𝐿 is a sort of Euler-Lagrange functional for the equation Δ𝜙 = 𝜌;
that is, if 𝜙∗ minimizes 𝐿, then for any 𝜓 ∈ 𝐻, we have

0 = d
d𝑡[𝐿(𝜙

∗ + 𝑡𝜓)|𝑡=0 =
d
d𝑡[⟨𝜙

∗, 𝜙∗⟩𝐷 + 2𝑡⟨𝜙∗, 𝜓⟩𝐷 + 𝑡2⟨𝜓, 𝜓⟩𝐷 − 2∫
𝑋
(𝜙∗ + 𝑡𝜓)𝜌

|
|
|
𝑡=0

= 2⟨𝜙∗, 𝜓⟩𝐷 − 2∫
𝑋
𝜓𝜌

⟹ 0 = ∫
𝑋
𝜓(Δ𝜙∗ − 𝜌).

As this holds for all 𝜓, this implies Δ𝜙∗ = 𝜌, by a “fundamental lemma of variational calculus”
in our geometric setting. Thus, minimizers of 𝐿 correspond to solutions of the Poisson equation,
and it suffices to show 𝐿 achieves this minimum on 𝐻:

1. First, 𝐿 is bounded below: writing 𝜌 = 𝑅𝜔, Cauchy-Schwarz and the Poincaré inequality
above give

∫
𝑋
𝜙𝑅𝜔 ≤ ‖𝑅‖𝐿2‖𝜙‖𝐿2 ≤ 𝐶′‖𝜙‖𝐷,

where 𝐶′ is a constant depending on the Poincaré constant and 𝜌, which is fixed in this
context. Here we use the observation that for 𝜙 ∈ 𝐻 nonzero, ∫𝜙𝜔 = 0, as for fixed 𝜔,
we can identify 𝐻 with smooth functions with integral 0 (by subtracting off the total
integral). Thus,

𝐿(𝜙) ≥ ‖𝜙‖2𝐷 − 2𝐶′‖𝜙‖𝐷 = (‖𝜙‖𝐷 − 𝐶′)2 − 4(𝐶′)2 ≥ −4(𝐶′)2,
so the infimum inf𝐻 𝐿 exists in 𝐑.

1As much as it breaks my inner analyst’s heart.
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2. Next, we can show by a direct computation that a minimizing sequence 𝜙𝑖 ∈ 𝐻 with
𝐿(𝜙𝑖) → inf𝐻 𝐿 is Cauchy with respect to the Dirichlet norm.

3. We can now complete 𝐻, which is an inner product space under the Dirichlet norm
(that this is indeed a norm and not just a seminorm also uses the Poincaré inequality).
Let 𝐻 be this completion, consisting of equivalence classes of Cauchy sequences.

4. 𝐿 is continuous on 𝐻 by the Poincaré inequality, so extends to the completion 𝐻; more-
over, by the previous fact, a minimizing (hence Cauchy) sequence for 𝐿 in 𝐻 has a
tautological limit 𝜙 in 𝐻, which by continuity has 𝐿(𝜙) = inf𝐻 𝐿 = inf�̂� 𝐿.

5. We now have a minimizing Cauchy sequence 𝜙𝑖 → 𝜙, which again by the Poincaré
inequality is Cauchy in 𝐿2. By completeness of 𝐿2, we can findΦ ∈ 𝐿2 with 𝜙𝑖 converging
to Φ in 𝐿2. A simple computation now gives

∫
𝑋
ΦΔ𝜓 −∫

𝑋
𝜌𝜓 = 0

for all 𝜓 ∈ 𝐻. Thus, Φ (which can be thought of as a representation of 𝜙 ∈ 𝐻) is a weak
solution to the Poisson equation.

6. If Φ was smooth, we would be done. However, we are still okay, as by Weyl’s lemma
(which we proved in the course of the homework), a weak solution to the Poisson
equation is a.e. given by a smooth function, thus completing the proof.

//

A few comments are in order: most of this proof is fairly straightforward functional analysis.
The only two non-formal inputs are the Poincaré inequality (which is used multiple times)
andWeyl’s lemma (which is used in constructing a smooth solution). Of these, the latter is a
typical result of elliptic regularity theory (yippee!), while the former has much more geometric
content, as we’ll soon see.

2. Three proofs of the general Poincaré inequality

With this motivation in hand, we can appreciate how useful the Poincaré inequality is, but
how might we prove it? Here, we will consider three versions of this inequality on subsets of
𝐑𝑛, with three corresponding proofs, examining how they trade off generality (in the domain)
with stronger constants. In the next section we’ll look in passing at estimates on manifolds, but
working locally (as we did in class), assuming we are in 𝐑𝑛 is usually sufficient.
For us, a domain Ω ⊂ 𝐑𝑛 is a connected, nonempty open set. Any property on the regularity

of the boundary (smooth, 𝐶1, Lipschitz) should be understand as asking for the same regularity
on 𝜕Ω as a manifold. All functions considered below are assumed to be (Lebesgue) measurable.
For this section, fix 𝑝 between 1 ≤ 𝑝 < ∞. Recall that a function 𝑓 on Ω has 𝐿𝑝 norm

‖𝑓‖𝐿𝑝(Ω) = (∫
Ω
|𝑓|𝑝 d𝑥)

1/𝑝

,

and 𝑓 ∈ 𝐿𝑝(Ω) if ‖𝑓‖𝐿𝑝(Ω) < ∞. The 𝐿𝑝 spaces are complete, and contains smooth functions
with compact support (denoted as 𝐶∞

𝑐 ) as a dense subspace. Poincaré inequalities involve
comparing the 𝐿𝑝 norm of a function with the 𝐿𝑝 norm of its derivative, so we need to restrict
to functions for which the latter phrase makes sense. The following definition is standard:



4 RUSHIL MALLARAPU

Definition 2.1. Suppose 𝑢, 𝑣 ∈ 𝐿1loc(Ω) (meaning 𝐿1 on compact subsets), and 𝑖 = 1,… , 𝑛. We
say 𝑣 is the 𝑖th weak partial derivative of 𝑢, writing 𝐷𝑖𝑢 = 𝑣, if

∫
Ω
𝑢𝐷𝑖𝜙 d𝑥 = −∫

Ω
𝑣𝜙 d𝑥 for all 𝜙 ∈ 𝐶∞

𝑐 (Ω)

Note that if 𝑢 was 𝐶1, this would hold via integration by parts with 𝑣 being the “true” partial
derivative. It is a fact that weak derivatives are uniquely defined a.e., if they exist. (By contrast,
distributional derivatives always exist, and are defined by a similar property of checking against
test functions. However, weak derivatives are at least functions).

Definition 2.2. The Sobolev space𝑊 1,𝑝(Ω) consists of all 𝐿𝑝(Ω) functions 𝑢 such that for each
𝑖 = 1,… , 𝑛, the weak derivative 𝐷𝑖𝑢 exists and is 𝐿𝑝(Ω). The Sobolev norm is given by

‖𝑢‖𝑊1,𝑝 = (∫
Ω
|𝑢|𝑝 d𝑥 +

𝑛
∑
𝑖=1

∫
𝑈
|𝐷𝑖𝑢|𝑝 d𝑥)

1/𝑝

.

𝐶∞
𝑐 (Ω) is naturally a subspace of 𝑊 1,𝑝(Ω), and we define

𝑊 1,𝑝
0 (Ω) = 𝐶∞

𝑐 (Ω)

to be the space of Sobolev functions which are “compactly supported.”

Sobolev spaces are natural choices for function spaces in which we want to do differential
analysis or solve PDE, but without restricting all the way to smooth functions. Note that the
choice of norm above is one of many equivalent choices.

2.1. A compactness approach. Our first version of the Poincaré inequality comes from
[Eva10], and uses the following result, which we saw on the homework.

Theorem 2.3 (Rellich-Kondrachov Compactness). SupposeΩ ⊂ 𝐑𝑛 is a bounded domain and
𝜕Ω is 𝐶1. Then

𝑊 1,𝑝(Ω) ⊂⊂ 𝐿𝑝(Ω).
That is, ‖⋅‖𝐿𝑝 ≤ 𝐶‖⋅‖𝑊1,𝑝 for a constant𝐶 and any bounded sequence in𝑊 1,𝑝(Ω) has a convergent
subsequence in 𝐿𝑝(Ω).

See [Eva10, §5.7] for a proof. The comparison of norms is trivial in our case, but in general,
when the exponents of these two spaces are allowed to be different, this result is known as the
Gagliardo-Nirenberg-Sobolev inequality. For the convergent subsequence part, one can try a
hands-on diagonalization argument, or first mollify and reduce to considering sequences of
smooth functions and apply Arzela-Ascoli. Nothing about the nature of Ω is used here, except
for boundedness, the consequence of which we’ll see in the below estimate.

Theorem 2.4. LetΩ be a bounded domain in 𝐑𝑛 with 𝐶1 boundary. Then there exists a constant
𝐶 = 𝐶(𝑛, 𝑝, 𝑈) such that

‖
‖‖
𝑢 −⨍

Ω
𝑢 d𝑥

‖
‖‖
𝐿𝑝(Ω)

≤ 𝐶‖𝐷𝑢‖𝐿𝑝(Ω)

Proof. I learned this proof from [Eva10, §5.8.1]. Write

𝐄Ω[𝑢] ≔ ⨍
Ω
𝑢 d𝑥 = 1

|Ω| ∫Ω
𝑢 d𝑥



POINCARÉ INEQUALITIES 5

for the average of 𝑢 over Ω. We proceed by contradiction: if no such constant existed, then for
each 𝑘 ≥ 1, we could find 𝑢𝑘 ∈ 𝑊 1,𝑝 such that

‖𝑢𝑘 − 𝐄Ω[𝑢𝑘]‖𝐿𝑝(Ω) > 𝑘‖𝐷𝑘𝑢‖𝐿𝑝(Ω).

Define 𝑣𝑘 by centering 𝑢𝑘 − 𝐄Ω[𝑢𝑘] and rescaling so that ‖𝑣𝑘‖𝐿𝑝 = 1 and 𝐄Ω[𝑣𝑘] = 0:

𝑣𝑘(𝑥) =
𝑢𝑘(𝑥) − 𝐄Ω[𝑢𝑘]

‖𝑢𝑘 − 𝐄Ω[𝑢𝑘]‖𝐿𝑝(Ω)
, 𝐷𝑣𝑘 =

𝐷𝑢𝑘
‖𝑢𝑘 − 𝐄Ω[𝑢𝑘]‖𝐿𝑝(Ω)

.

That is, ‖𝐷𝑣𝑘‖ <
1
𝑘
. In particular, {𝑣𝑘} is bounded in𝑊 1,𝑝(Ω), so by Theorem 2.3, there exists

𝑤 ∈ 𝐿𝑝(Ω) with a subsequence {𝑤𝑘} ⊂ {𝑣𝑘} converging to 𝑤 in 𝐿𝑝. Thus, this 𝑤 has 𝐄Ω[𝑤] = 0
and ‖𝑤‖𝐿𝑝(Ω) = 1. However, as the derivatives of 𝑤𝑘 are converging to 0, this 𝑤 should also
have zero (weak) derivative: indeed, for any test 𝜙 ∈ 𝐶∞

𝑐 (Ω),

∫
Ω
𝑤𝐷𝑖𝜙 d𝑥 = lim

𝑘→∞
∫
Ω
𝑤𝑘𝐷𝑖𝜙 d𝑥 = − lim

𝑘→∞
∫
Ω
(𝐷𝑖𝑤𝑘)𝜙 d𝑥 = 0.

Thus, 𝐷𝑤 = 0 a.e., and sinceΩ is connected,𝑤 is constant. However, 𝐄Ω[𝑤] = 0 implies𝑤 = 0,
but ‖𝑤‖𝐿𝑝(Ω) = 1, a contradiction. //

Here, we get no control on the constant; it shows up because our (very general and nonetheless
powerful) compactness theorem declares it must show up. While a useful and, in my opinion,
fairly quick proof, it lacks some of the intuition of the next two.
Also, it is a similar fact that𝑊 1,𝑝

0 (Ω) ⊂⊂ 𝐿𝑝(Ω) for such bounded domains, and this same
proof adapts readily to a Poincaré inequality for such zero boundary functions. There the
contradiction is (roughly) that the 𝑤 so constructed is contained in𝑊 1,𝑝

0 (Ω), so should be 0 on
the boundary, but it is also a constant with integral 1, which is impossible. [Thi23].
It is worthwhile to note, however, that rescaling gives a version of domain dependence:

Corollary 2.5. There exists a constant 𝐶 = 𝐶(𝑛, 𝑝) such that for 𝑢 ∈ 𝑊 1,𝑝(𝐵𝑟(𝑥)),

‖
‖𝑢 − 𝐄𝐵𝑟(𝑥) 𝑢

‖
‖𝐿𝑝(𝐵𝑟(𝑥))

≤ 𝐶𝑟‖𝐷𝑢‖𝐿𝑝(𝐵𝑟(𝑥)),

where 𝐵𝑟(𝑥) denotes the radius 𝑟 open ball around 𝑥 ∈ 𝐑𝑛.

Proof. Pick 𝐶 in Theorem 2.4 corresponding to Ω = 𝐵1(0) being the centered unit ball. Then,
reparametrize

𝑣(𝑦) = 𝑢(𝑥 + 𝑟𝑦), 𝑦 ∈ 𝐵1(0).

It is clear that ‖‖𝑢 − 𝐄𝐵𝑟(𝑥) 𝑢
‖
‖𝐿𝑝(𝐵𝑟(𝑥))

= ‖
‖𝑣 − 𝐄𝐵1(0) 𝑣

‖
‖𝐿𝑝(𝐵1(0))

, and similarly,

∫
𝐵1(0)

|𝐷𝑣|𝑝 d𝑦 = ∫
𝐵1(0)

𝑟𝑝|𝐷𝑢(𝑥 + 𝑟𝑦)|𝑝 d𝑦 ⟹ ‖𝐷𝑣‖𝐿𝑝(𝐵1(0)) = 𝑟‖𝐷𝑢‖𝐿𝑝(𝐵𝑟(𝑥)).

Applying Theorem 2.4 to 𝑣 and using these two inequalities gives the desired estimate. //

In general, the existence of Sobolev inequalities with differing parameters can be ruled out
by such scaling arguments, but we won’t touch more on this idea: see the notes [Joh20].
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2.2. A direct approach. he next version I will present uses the domain more directly, as well
as a direct computation, to give a more interpretable constant.
In this and the next section, let 𝑞 = 𝑝

𝑝−1
be Hölder conjugate to 𝑝.

Theorem 2.6. LetΩ be a finite width domain, i.e. it lies between two parallel hyperplanes in 𝐑𝑛

with width 𝑑. Then for all 𝑢 ∈ 𝑊 1,𝑝
0 (Ω), we have

∫
Ω
|𝑢|𝑝 d𝑥 ≤ 𝑑𝑝

𝑝 ∫
Ω
|𝐷𝑢|𝑝 d𝑥.

Proof. I learned this proof from [Leo17, Theorem 13.19]. By density (vis-a-vis definition) it
suffices to assume 𝑢 ∈ 𝐶∞

𝑐 (Ω), and by rotating/translating, assume without loss of generality
Ω lies between the hyperplanes 𝑥𝑛 = 0 and 𝑥𝑛 = 𝑑. We can compute

|𝑢(𝑥′, 𝑥𝑛)| = |𝑢(𝑥′, 𝑥𝑛) − 𝑢(𝑥′, 0)| =
|
|
|
∫

𝑥𝑛

0
𝐷𝑛𝑢(𝑥′, 𝑡) d𝑡

|
|
|

≤ ∫
𝑑

0
1𝑡≤𝑥𝑛|𝐷𝑛𝑢(𝑥

′, 𝑡)| d𝑡 ≤ 𝑥1/𝑞𝑛 (∫
𝑑

0
|𝐷𝑛𝑢(𝑥′, 𝑡)|𝑝 d𝑡)

1/𝑝

,

by the fundamental theorem of calculus and Hölder’s inequality. Extending 𝑢 by 0 on 𝐑𝑛 ⧵ Ω,
we can estimate the LHS using Fubini-Tonelli, and that |𝐷𝑛𝑢| ≤ |𝐷𝑢|:

∫
Ω
|𝑢|𝑝 d𝑥 = ∫

𝐑𝑛−1
∫

𝑑

0
|𝑢(𝑥′, 𝑥𝑛)|𝑝 d𝑥𝑛 d𝑥′

≤ ∫
𝐑𝑛−1

∫
𝑑

0
𝑥𝑝/𝑞𝑛 ∫

𝑑

0
|𝐷𝑛𝑢(𝑥′, 𝑡)|𝑝 d𝑡 d𝑥𝑛 d𝑥′

= ∫
𝑑

0
𝑥𝑝−1𝑛 d𝑥𝑛 ⋅ ∫

𝐑𝑛−1
∫

𝑑

0
|𝐷𝑛𝑢(𝑥′, 𝑡)|𝑝 d𝑡 d𝑥′

= 𝑑𝑝
𝑝 ∫

Ω
|𝐷𝑛𝑢|𝑝 d𝑥 ≤

𝑑𝑝
𝑝 ∫

Ω
|𝐷𝑢|𝑝 d𝑥.

//

In many sources, this theorem is stated with the stronger assumption that Ω is bounded;
here we only need that Ω is bounded in one direction, as the key step is being able to control 𝑢
by integrating the gradient in that direction. Of course, bounding |𝐷𝑛𝑢| ≤ |𝐷𝑢|might lose a lot
in general, but it can be tight if, say, 𝑢 is constant in all other directions.

2.3. A volumetric approach. Jost’s book [Jos13] has yet another version of the Poincaré
inequality, equivalent at least in spirit to that of Leoni. However, the proof makes critical use of
the following volumetric estimate. Jost’s treatment of the subject focuses on the special (and
Hilbert space theoretic) case of 𝑊 1,2, but I have adapted the proof to arbitrary 𝑝. Let 𝜔𝑛 be the
measure of the unit ball in 𝐑𝑛.

Lemma 2.7. LetΩ be a domain with finite (Lebesgue) measure, 𝑓 ∈ 𝐿1(Ω), 0 < 𝑎 ≤ 1. Then
‖
‖‖
∫
Ω
|𝑥 − 𝑦|𝑛(𝑎−1)𝑓(𝑦) d𝑦

‖
‖‖
𝐿𝑝(Ω)

≤ 1
𝑎𝜔

1−𝑎
𝑛 |Ω|𝑎‖𝑓‖𝐿𝑝(Ω).
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Proof. Pick 𝑅 ≥ 0 so that |Ω| = |𝐵𝑅(𝑥)| = 𝜔𝑛𝑅𝑛. In particular,

|Ω ⧵ (Ω ∩ 𝐵𝑅(𝑥))| = |𝐵𝑅(𝑥) ⧵ (Ω ∩ 𝐵𝑅(𝑥))|,

and for 𝑦 ∉ 𝐵𝑅(𝑥), |𝑥 − 𝑦|𝑛(𝑎−1) ≤ 𝑅𝑛(𝑎−1), and vice versa for 𝑦 ∈ 𝐵𝑅(𝑥). Thus,

∫
Ω
|𝑥 − 𝑦|𝑛(𝑎−1) d𝑦 ≤ ∫

𝐵𝑅(𝑥)
|𝑥 − 𝑦|𝑛(𝑎−1) d𝑦 = 1

𝑎𝜔𝑛𝑅
𝑛𝑎 = 1

𝑎𝜔
1−𝑎
𝑛 |Ω|𝑎.

as on Ω ⧵ (Ω ∩ 𝐵𝑅(𝑥)), these assumptions let us perform the following bit of clever trickery:

∫
Ω⧵(Ω∩𝐵𝑅(𝑥))

|𝑥 − 𝑦|𝑛(𝑎−1) d𝑦 ≤ ∫
Ω⧵(Ω∩𝐵𝑅(𝑥))

𝑅𝑛(𝑎−1) d𝑦

= |Ω ⧵ (Ω ∩ 𝐵𝑅(𝑥))|𝑅𝑛(𝑎−1)

= |𝐵𝑅(𝑥) ⧵ (Ω ∩ 𝐵𝑅(𝑥))|𝑅𝑛(𝑎−1)

= ∫
𝐵𝑅(𝑥)⧵(Ω∩𝐵𝑅(𝑥))

𝑅𝑛(𝑎−1) d𝑦

≤ ∫
𝐵𝑅(𝑥)⧵(Ω∩𝐵𝑅(𝑥))

|𝑥 − 𝑦|𝑛(𝑎−1) d𝑦.

The remaining computation follows by radial integration, introducing the appropriate volume
elements. Therefore, writing

|𝑥 − 𝑦|𝑛(𝑎−1)|𝑓(𝑦)| = |𝑥 − 𝑦|𝑛(𝑎−1)/𝑞 ⋅ |𝑥 − 𝑦|𝑛(𝑎−1)/𝑝|𝑓(𝑦)|,

Hölder’s inequality gives

|
|
|
∫
Ω
|𝑥 − 𝑦|𝑛(𝑎−1)𝑓(𝑦) d𝑦

|
|
|
≤ ∫

Ω
|𝑥 − 𝑦|𝑛(𝑎−1)|𝑓(𝑦)| d𝑦

≤ (∫
Ω
|𝑥 − 𝑦|𝑛(𝑎−1) d𝑦)

1/𝑞

(∫
Ω
|𝑥 − 𝑦|𝑛(𝑎−1)|𝑓(𝑦)|𝑝 d𝑦)

1/𝑝

Integrating this inequality over 𝑥 ∈ Ω gives

‖
‖‖
∫
Ω
|𝑥 − 𝑦|𝑛(𝑎−1)𝑓(𝑦) d𝑦

‖
‖‖

𝑝

𝐿𝑝(Ω)

≤ (1𝑎𝜔
1−𝑎
𝑛 |Ω|𝑎)

𝑝/𝑞
∫
Ω
∫
Ω
|𝑥 − 𝑦|𝑛(𝑎−1)|𝑓(𝑦)|𝑝 d𝑦 d𝑥

≤ (1𝑎𝜔
1−𝑎
𝑛 |Ω|𝑎)

𝑝−1
∫
Ω
∫
Ω
|𝑥 − 𝑦|𝑛(𝑎−1)|𝑓(𝑦)|𝑝 d𝑥 d𝑦

≤ (1𝑎𝜔
1−𝑎
𝑛 |Ω|𝑎)

𝑝−1
∫
Ω
(1𝑎𝜔

1−𝑎
𝑛 |Ω|𝑎)|𝑓(𝑦)|𝑝 d𝑦

≤ (1𝑎𝜔
1−𝑎
𝑛 |Ω|𝑎)

𝑝
‖𝑓‖𝑝𝐿𝑝(Ω)

⟹
‖
‖‖
∫
Ω
|𝑥 − 𝑦|𝑛(𝑎−1)𝑓(𝑦) d𝑦

‖
‖‖
𝐿𝑝(Ω)

≤ (1𝑎𝜔
1−𝑎
𝑛 |Ω|𝑎)‖𝑓‖𝐿𝑝(Ω).

//
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So what just happened there? The key step is the volumetric rearrangement, which manages
to be independent of the point 𝑥 and control the integrals of these sharp spikes; the remaining
steps are fairly rote. With this in hand, we get a new version of the Poincaré inequality, relating
to the measure of Ω instead of its diameter.

Theorem 2.8. LetΩ be a domain with finite measure. Then for 𝑢 ∈ 𝑊 1,𝑝
0 (Ω), we have

‖𝑢‖𝐿𝑝(Ω) ≤ (
|Ω|
𝜔𝑛

)
1/𝑛
‖𝐷𝑢‖𝐿𝑝(Ω).

Proof. I learned this proof from [Jos13, Theorem 8.2.2], where it is proved for 𝑝 = 2; the
extension to general 𝑝 is my own. As before, it suffices to assume 𝑢 ∈ 𝐶1

0(Ω) (this is still dense
in𝑊 1,𝑝

0 (Ω) and extend 𝑢 by 0 outside of Ω. Now, let 𝜔 ∈ 𝑆𝑛−1 be any unit length direction in
𝐑𝑛. Integrating 𝑢 on the ray 𝐑 ⋅ 𝜔, we get

𝑢(𝑥) = −∫
∞

0
𝐷𝑟𝑢(𝑥 + 𝑟𝜔) d𝑟.

Then, integrating over 𝜔 gives

𝑢(𝑥) = −∫
∞

0
⨍
|𝜔|=1

𝐷𝑟𝑢(𝑥 + 𝑟𝜔) d𝜔 d𝑟

= − 1
𝑛𝜔𝑛

∫
∞

0
∫
|𝜔|=1

𝐷𝑟𝑢(𝑥 + 𝑟𝜔) d𝜔 d𝑟

= − 1
𝑛𝜔𝑛

∫
∞

0
∫
𝑦∈𝛿𝐵𝑟(𝑥)

1
𝑟𝑛−1

𝜕𝑢
𝜕𝜈 (𝑦) d𝜎(𝑧) d𝑟

= − 1
𝑛𝜔𝑛

∫
Ω

1
|𝑥 − 𝑧|𝑛−1

𝑛
∑
𝑖=1

𝐷𝑖𝑢(𝑧) ⋅
𝑥𝑖 − 𝑧𝑖
|𝑥 − 𝑧| d𝑧

⟹ |𝑢(𝑥)| ≤ 1
𝑛𝜔𝑛

∫
Ω

1
|𝑥 − 𝑧|𝑛−1 |𝐷𝑢(𝑧)| d𝑧.

The key steps here are few changes of variables, our explicit knowledge of the normal vector,
and hence normal derivative, on the ball, and the estimate

|
|
|

𝑛
∑
𝑖=1

𝐷𝑖𝑢(𝑧) ⋅
𝑥𝑖 − 𝑧𝑖
|𝑥 − 𝑧|

|
|
|
≤

𝑛
∑
𝑖=1
|𝐷𝑖𝑢(𝑧)| ⋅

|𝑥𝑖 − 𝑧𝑖|
|𝑥 − 𝑧| ≤ (max

1≤𝑖≤𝑛

|𝑥𝑖 − 𝑧𝑖|
|𝑥 − 𝑧| )

𝑛
∑
𝑖=1
|𝐷𝑖𝑢(𝑧)| ≤ 1 ⋅ |𝐷𝑢(𝑧)|.

From here, simply apply Lemma 2.7 with 𝑓 = |𝐷𝑢| and 𝜇 = 1/𝑛, giving

‖𝑢‖𝐿𝑝(Ω) ≤
1

𝑛𝜔𝑛
⋅ 1𝜇𝜔

1−1/𝑛
𝑛 |Ω|1/𝑛‖𝐷𝑢‖𝐿𝑝(Ω) = (

|Ω|
𝜔𝑛

)
1/𝑛
‖𝐷𝑢‖𝐿𝑝(Ω).

//

This estimate is fairly surprising to me; many sources claim that Poincaré inequalities only
work when the domain is bounded in at least 1 direction, but there are many finite measure
domainswhich are unbounded. Most counterexamples involveworking onunbounded domains
with infinite measure, but the proof above wouldn’t apply in such a context nonetheless. It’s a
curious thing to think about, but in any case, which of Theorem 2.6 and Theorem 2.8 would
give better constants depends heavily on the geometry of the domain.
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3. The geometry of Poincaré constants

In this section, I’ll share some results connecting the Poincaré constant to more precise
geometry of the domain. As we’ll see, information flows both ways, with stronger geometric
assumptions giving better constants, and with known estimates on these constants providing
arguably geometric data.

3.1. 𝐿2 Poincaré constants and spectral theory of the Laplacian. As we saw in class, 𝐿2
Poincaré constants are related to the lowest nonzero eigenvalue of the Laplacian. In fact, a
simple calculation can elucidate this connection.

Proposition 3.1. Let 𝑤 > 0 be a positive smooth function on a domain Ω with Δ𝑤 ≥ 𝜇𝑤 for
some 𝜇 > 0. Then for any 𝑢 ∈ 𝑊 1,2

0 (Ω),

∫
Ω
𝑢2 d𝑥 ≤ 1

𝜇 ∫Ω
|𝐷𝑢|2 d𝑥.

Proof. Recall we are using the geometers’ Laplacian. Now let 𝑢 be any smooth function vanish-
ing on 𝜕Ω. Then 𝑢2𝐷𝑤/𝑤 also vanishes on 𝜕Ω, and has divergence

divv(𝑢2𝐷𝑤𝑤 ) = 2𝑢⟨𝐷𝑢, 𝐷𝑤𝑤 ⟩ − 𝑢2
|𝐷𝑤|2

𝑤2 − 𝑢2Δ𝑤𝑤

= −|||𝐷𝑢 − 𝑢𝐷𝑤𝑤
|||
2
+ |𝐷𝑢|2 − 𝑢2Δ𝑤𝑤

=≤ |𝐷𝑢2| − 𝜇𝑢2.
Thus, the divergence theorem gives, upon integrating over Ω, that

0 ≤ ∫
Ω
|𝐷𝑢|2 − 𝜇∫

Ω
𝑢2 ⟹ 𝜇∫

Ω
𝑢2 ≤ ∫

Ω
|𝐷𝑢|2.

//

So far this is just calculus: to see that this bound is achieved requires some spectral theory of
the Laplacian. That is, one needs a theorem like the following:

Theorem 3.2. [Jos13, Theorem 9.5.1] LetΩ ⊂ 𝐑𝑛 be a bounded domain. Then the eigenvalue
problem Δ𝑢 = 𝜆𝑢, 𝑢 ∈ 𝑊 1,2

0 (Ω) has countably many eigenvalues
0 < 𝜆1 < 𝜆2 ≤ … ,

with 𝜆𝑚 →∞ and an 𝐿2-orthonormal basis of eigenfunctions 𝑢𝑖 ∈ 𝑊 1,2
0 (Ω) with ⟨𝐷𝑢𝑖, 𝐷𝑢𝑖⟩ = 𝜆𝑖.

Recall this led to a sharp Poincaré inequality in the following direct way: given any 𝑢 ∈
𝑊 1,2
0 (Ω), we can write it uniquely as

𝑢 = ∑
𝑖≥1

𝑎𝑖𝑢𝑖 and 𝐷𝑢 = ∑
𝑖≥1

𝑎𝑖𝐷𝑢𝑖.

Then, we can compute the 𝐿2 norms as

‖𝑢‖2𝐿2(Ω) = ∑
𝑖≥1

𝑎2𝑖 and ‖𝐷𝑢‖2𝐿2(Ω) = ∑
𝑖≥1

𝜆𝑖𝑎2𝑖 .

It is clear that
‖𝐷𝑢‖2𝐿2(Ω) = ∑

𝑖≥1
𝜆𝑖𝑎2𝑖 ≥ 𝜆1∑

𝑖≥1
𝑎2𝑖 = 𝜆1‖𝑢‖2𝐿2(Ω),



10 RUSHIL MALLARAPU

giving the inequality

‖𝑢‖𝐿2(Ω) ≤
1

√𝜆1
‖𝐷𝑢‖𝐿2(Ω),

which is of course achieved for 𝑢 = 𝑢1.
Above, we’ve considered only the case where our functions are 0 on some boundary, but we

could have asked for them to havemean 0. One distinguishes these two boundary conditions for
Poincaré inequalities by talking about Dirichlet eigenvalues (where 𝑢 is 0 on the boundary) on
Neumann eigenvalues (where the normal derivative is 0, or on a closed manifold𝑀, ∫𝑀 𝑢 = 0).
In fact, a similar spectral theorem holds for Neumann eigenvalues, and the smallest nonzero
such eigenvalues admit the variational characterizations

𝜆1 = inf
∫Ω|𝐷𝑢|

2

∫Ω 𝑢2
,

where in the Dirichlet case the infimum is taken over zero-boundary functions, and in the
Neumann case over mean zero functions. These give corresponding Poincaré inequalities as
one expects [CM, §7.1].
To tie back to lecture, our Poincaré inequality on the sphere relied on the spectral theory of

Neumann eigenvalues, where constant functions correspond to a nontrivial 0 eigenspace.
In these cases, geometric analysis lets one lower bound these eigenvalues, and hence upper

bound the corresponding Poincaré constants. As an example of such a result for readers familiar
with some Riemannian geometry, we have the following [CM, Theorem 7.56].

Theorem 3.3 (Lichnerowicz). Suppose 𝑀 is a complete Riemannian 𝑛-manifold with Ricci
curvature lower bounded by 𝑐 > 0. Then the first non-zero Neumann eigenvalue is lowed bounded
by 𝑐𝑛

𝑛−1
. In particular, we have

‖𝑢‖𝐿2(𝑀) ≤√
𝑛 − 1
𝑐𝑛 ‖𝐷𝑢‖𝐿2(𝑀).

To avoid getting too deep, I’ll refrain from commenting further on this, other than to say that
while these functions are usually taken to be smooth, we can still extend them via density.
Thus, much of the literature on 𝐿2 Poincaré constants is really about eigenfunctions of the

Laplacian and spectral geometry. For example, a very lower weak bound on this eigenvalue is
related to the isoperimetry of the domain Ω [Wei56], although we won’t touch on this further.
Ergo, if you can understand the spectrumof themanifold Laplacian (e.g. the spherical Laplacian,
as we saw in class), you can control the Poincaré constant, whereas an oft-quoted definition of
this spectrum comes from its minimax characterization in terms of Poincaré inequalities!

3.2. 𝐿1 Poincaré constants and isoperimetry. In the convex setting, i.e., whenΩ is a bounded
convex domain in𝐑𝑛 with diameter 𝑑, then for 𝑢 ∈ 𝑊 1,𝑝(Ω)with∫Ω 𝑢 d𝑥 = 0, we have optimal
geometric bounds on the optimal Poincaré constant:

𝐶𝑝 = sup
‖𝑢‖𝐿𝑝(Ω)
‖𝐷𝑢‖𝐿𝑝(Ω)

.

In particular, for 𝑝 = 2, [PW60] showed the optimal constant is 𝑑/𝜋. More recently, for 𝑝 = 1,
[AD04] showed the optimal constant is 𝑑/2. These constants are approached for a parallelepiped
with all but one dimension tending to 0, e.g. Ω𝜖 = [0, 1] × [0, 𝜖]𝑛−1. In both cases, these results
rely on first localizing to a 1-dimensional inequality and performing some staightforward



POINCARÉ INEQUALITIES 11

analysis. However, I’d like to conclude by reproducing a (very) heuristic argument relating
such an 𝐿1 Poincaré inequality to the isoperimetry of the function’s level sets [Alg12].
Suppose we have a function 𝑓, and fix some difference ‵‵Δ𝑓′′ = 𝛿 > 0. The Darth Vader rule

(this is what normal people call the layer cake representation of the Lebesgue integral, but I
was raised by probability theorists) shows that

∫
Ω
|𝑓| d𝑥 = ∫

𝑡≥0
|{𝑓 ≥ 𝑡}| d𝑡,

where {𝑓 ≥ 𝑡} is the subset {𝑥 ∈ Ω ∶ 𝑓(𝑥) ≥ 𝑡}. To approximate this integral, partition Ω into
the approximate level sets

Ω𝑖 = {𝑥 ∈ Ω ∶ 𝑖𝛿 ≤ 𝑓(𝑥) ≤ (𝑖 + 1)𝛿}
for 𝑖 ≥ 0. Then taking Δ𝑡 = 𝛿, we get

∫
Ω
|𝑓| d𝑥 ≈ ∑

𝑖≥0
𝛿(|{𝑓 ≥ 𝑖𝛿}| − |{𝑓 ≥ (𝑖 + 1)𝛿}|) = 𝛿∑

𝑖≥0
|Ω𝑖|.

For the gradient, observe that for small 𝛿, the change in 𝑓 from Ω𝑖 to Ω𝑖+1 is roughly 𝛿 times
the perimeter of Ω𝑖, as the volume of Ω𝑖 ⧵ Ω𝑖+1 is about the perimeter scaled by this difference.
This gives

∫
Ω
|𝐷𝑓| d𝑥 ≈ ∑

𝑖≥0
|𝜕Ω𝑖|𝛿.

By the isoperimetric inequality we know 4𝜋|𝜕Ω𝑖|2 ≥ |Ω𝑖| (for simplicity, assume Ω is in 𝐑2).
Doing some rearranging, we get

√|Ω𝑖|
|𝜕Ω𝑖|
2√𝜋

≥ |Ω𝑖|.

Moreover, as Ω𝑖 has area at most 𝜋𝑑2 (by the assumption that Ω had diameter 𝑑), this gives

|Ω𝑖| ≤ |𝜕Ω𝑖|
𝑑
2 ,

and summing up, we get the claimed Poincaré inequality

∫
Ω
|𝑓| d𝑥 ≤ 𝑑

2 ∫Ω
|𝐷𝑓| d𝑥.

Of course, making this rigorous and general across dimensions is significantly harder, but
as it turns out, isoperimetric inequalities and Poincaré constants are deeply connected. In
fact, much recent progress in the field of convex geometry and the Kannan-Lovász-Simonovits
conjecture involves establishing related Poincaré inequalities with respect to arbitrary log-
concave probability measures, but that is a story for a very different time.

4. Conclusion

Overall, we’ve seen how Poincaré inequalities, a crucial and non-formal result in the theory
of Sobolev spaces and harmonic analysis, are used critically in establishing the theory of
Riemann surfaces. Moreover, the constants in such inequalities have natural connections to
the geometry of their domains, and this connection is bidirectional: just as boundedness or
convexity assumptions (say) on a domain can quantify the specific Poincaré constant, knowledge
of Poincaré inequalities can investigate or even characterize the spectral geometry of manifolds.
While an arguably classical result, many current streams of research revolve around this circle
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of ideas, from extending these inequalities to arbitrary measures to comparision geometry.
Hopefully the reader has learned something interesting about the nature of these inequalities
and their broader role within modern mathematics.
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