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The purity theorem in motivic homotopy theory provides an analog of the tubular
neighborhood theorem in topology, and is central to establishing Gysin sequences and
other structural results. The goal is to briefly review the unstable motivic category of
spaces and prove the purity theorem. Along the way, constructions in algebraic geometry
and intersection theory will be introduced to formulate the key insights of the proof.
This is an expository final paper for Math 277Z, with Elden Elmanto. All mistakes are

my own; please reach out to me if you spot anything!

1. Motivic Spaces and Thom Spaces

We start by setting up some foundations of unstable motivic homotopy theory. Good
references for this section are [AE16] and [Sha14].

The Nisnevich Topology. We want our motivic spaces to be certain sheaves of spaces
on smooth schemes over a qcqs base 𝑆 . Denote by Sm𝑆 the category of finitely presented
smooth schemes over 𝑆 .1 The following definition is due to Lurie:
Definition 1.1. The Nisnevich topology on Sm𝑆 is the Grothendieck topology generated
by finite covers {𝑝𝑖 ∶𝑈𝑖 Ð→ 𝑋}𝑖∈𝐼 where 𝑝𝑖 are all étale and there is a finite sequence

∅ ⊆ 𝑍𝑛 ⊆ 𝑍𝑛−1 ⊆ ⋯ ⊆ 𝑍1 ⊆ 𝑍0 = 𝑋

of f.p. closed subschemes such that

∐
𝑖∈𝐼

𝑝−1𝑖 (𝑍𝑚 −𝑍𝑚+1)Ð→ 𝑍𝑚 −𝑍𝑚+1

admits a section for 0 ≤𝑚 ≤ 𝑛 − 1.
Date: December 16, 2022.
1Some sources instead require that 𝑆 be noetherian of finite Krull dimension, in which case this category is
equivalent to smooth schemes of finite type.
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When 𝑆 is noetherian of finite Krull dimension, this condition is equivalent to the usual
definition of a Nisnevich cover: every point 𝑥 has a preimage 𝑦 ∈ 𝑈𝑖 such that 𝑘(𝑥) Ð→
𝑘(𝑦) is an isomorphism. In addition, the Zariski topology is coarser than the Nisnevich
topology, which is coarser than the étale topology.
For practical purposes, one may think of the Nisnevich topology as being “generated”

by distinguished Nisnevich squares, of the form:

𝑈 ×𝑋 𝑉 𝑉 𝑝−1(𝑋 −𝑈 )

𝑈 𝑋 𝑋 −𝑈

𝑝

𝑖

≅

where 𝑝 is étale, 𝑖 is an open immersion, and 𝑝 is an isomorphism away from 𝑈 (the left
square here is the actual “distinguished square”). In this situation, {𝑖 ∶𝑈 Ð→ 𝑋,𝑝 ∶𝑉 Ð→ 𝑋}
is a Nisnevich cover of𝑋 , as open immersions are étale and we can consider the sequence
∅ ⊆ 𝑋 −𝑈 ⊆ 𝑋 , and 𝑝−1𝑈 ⊔𝑈 Ð→𝑈 has a section.
The usefulness of these squares is highlighted by the following proposition:

Proposition 1.2. Suppose 𝑆 is noetherian of finite Krull dimension. A presheaf of spaces
𝐹 ∶S

op
𝑆 Ð→ S is a Nisnevich sheaf (i.e. satisfies descent with respect to the Nisnevich topology)

iff 𝐹 carries distinguished squares to Cartesian squares of spaces and 𝐹(∅) is final.

Proof. See [WW19, 2.1]. □

A1-Local Motivic Spaces. In addition to requiring our “spaces” to be sheaves with re-
spect to the Nisnevich topology, we also would like to invert A1, which is analogous
forming the homotopy category of topological spaces by inverting the unit interval. Write
Psh(Sm𝑆) = Fun(Sm𝑆 , Spc) for the∞-category of presheaves of spaces on Sm𝑆 .

Definition 1.3. Let 𝐽 be the collection of morphisms containing Nisnevich covers and
projections A1 ×𝑆 𝑋 Ð→ 𝑋 . The∞-categorical localization

SpcA
1

𝑆 B 𝐽−1Psh(Sm𝑆)

is the∞-category of motivic spaces [Sha14].

Many sources construct the unstable motivic category as a model category via A1-
localizing the model category of simplicial Nisnevich sheaves on Sm𝑆 . We therefore trust
that the above formalism is understandable, and the distinction unimportant.

Example 1.4. By inverting A1, we find that for 𝑝 ∶𝐸 Ð→ 𝑋 a vector bundle in Sm𝑆 , 𝑝 is an
A1-equivalence (where 𝐸 and 𝑋 are thought of as spaces via the Yoneda embedding). In
addition, sections of vector bundles are A1-equivalences.

While checking arbitrary maps are A1-equivalences is hard, it turns out there are easy
ways of detecting cocartesian diagrams of spaces, thanks to Proposition 1.2.
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Proposition 1.5. If 𝑆 is noetherian of finite Krull dimension, then distinguished Nisnevich
squares are cocartesian squares in Spc𝑆 [AE16, 4.13].

We can define the quotient 𝑋 /𝑍 of a map 𝑍 Ð→ 𝑋 in Sm𝑆 as

𝑋 /𝑍 = cof(𝑍 Ð→ 𝑋) ∈ SpcA
1

𝑆 .

In addition, by Proposition 1.5, if we are given a distinguished square

𝑈 ×𝑋 𝑉 𝑉

𝑈 𝑋

we have a natural A1-equivalence

𝑉

𝑈 ×𝑋 𝑉
Ð→

𝑋

𝑈

of quotients. This fact will be useful in proving the purity theorem.

2. Blow-Ups and Normal Cones

In this section, we will discuss blow-ups and normal cones, two constructions from
algebraic geometry that play a crucial role in the purity theorem. Intuitively, we want an
algebro-geometric analog of taking tubular neighborhoods.

Blow-Ups. Consider a closed immersion 𝑍 ↪̸ 𝑋 , and let I be the corresponding ideal
sheaf. In good cases, 𝑍 is an effective Cartier divisor, meaning that I is locally generated
by a single nonzerodivisor of O𝑋 ; equivalently, I is an invertible sheaf. In general, the
blow-up of 𝑍 in𝑋 is an enlargement of𝑋 that corrects 𝑍 to be an effective Cartier divisor.

Definition 2.1. The blow-up of 𝑍 in 𝑋 is a map 𝜋 ∶Bl𝑍 𝑋 Ð→ 𝑋 fitting into a diagram

𝐸𝑍𝑋 Bl𝑍 𝑋 𝜋−1(𝑋 −𝑍)

𝑍 𝑋 𝑋 −𝑍

𝜋 ≅

where the left square is Cartesian, the right vertical map is an isomorphism, and the closed
immersion of the exceptional locus 𝐸𝑍𝑋 ↪̸ Bl𝑍 𝑋 is an effective Cartier divisor.

To construct this, one can take the graded sheaf of ideals⊕𝑛≥0 I𝑛 and defines

Bl𝑍 𝑋 = Proj
𝑋
⊕
𝑛≥0
I𝑛,

with the canonical map 𝜋 ∶Bl𝑍 𝑋 Ð→ 𝑋 . Let us check the two properties promised by our
definition. We start by recording a technical lemma:

3



Lemma 2.2. Let 𝑓 ∶𝑋 Ð→ 𝑋 ′ be a flat morphism of schemes, 𝑍 ′ ↪̸ 𝑋 ′ a closed subscheme,
and 𝑍 = 𝑓 −1𝑍 ′. Then there is a Cartesian diagram:

Bl𝑍 𝑋 Bl𝑍 ′ 𝑋 ′

𝑋 𝑋 ′
𝑓

⌟

Proof. See [Sta22, 0805]. □

Proposition 2.3. In the situation above:

(a) 𝜋−1(𝑋 −𝑍)Ð→ 𝑋 −𝑍 is an isomorphism.

(b) 𝐸𝑍𝑋 ↪̸ Bl𝑍 𝑋 is an effective Cartier divisor,

Proof. (a) Recall that 𝑋 − 𝑍 ↪ 𝑋 is flat (it’s an open immersion), so by the above lemma,
𝜋−1(𝑋−𝑍) ≅ Bl∅𝑋−𝑍 . Thus, it suffices to prove that blowing up the empty set (i.e. I = O𝑋 )
does nothing; this follows because, Proj𝐴[𝑇 ]Ð→ Spec𝐴 is an isomorphism [Sta22, 01MI].

(b) It suffices to show this affine-locally on 𝑋 . Assume 𝑍 = Spec𝐴/𝐼 ↪̸ 𝑋 = Spec𝐴. By
[Sta22, 0804], Bl𝑍 𝑋 is covered by Spec𝐴[𝐼/𝑎], where 𝐴[𝐼/𝑎] = (⊕𝑛≥0 𝐼𝑛)𝑎(1) is the affine
blowup algebra. In this situation, we see that 𝐼𝐴[𝐼/𝑎] = 𝑎𝐴[𝐼/𝑎] and 𝑎 is a nonzerodivisor
in 𝐴[𝐼/𝑎]. As 𝐸𝑍𝑋 in Spec𝐴[𝐼/𝑎] corresponds to Spec 𝐼𝐴[𝐼/𝑎] = Spec𝑎𝐴[𝐼/𝑎], we see the
ideal sheaf defining 𝐸𝑍𝑋 is invertible, as desired. □

The above proof also shows that the ideal sheaf of 𝐸𝑍𝑋 ↪̸ Bl𝑍 𝑋 is 𝜋−1I ⋅ OBl𝑍 𝑋 =

⊕𝑛≥0 I𝑛+1, which means we can identify 𝐸𝑍𝑋 as

𝐸𝑍𝑋 = Proj
𝑋
(⊕
𝑛≥0
I𝑛/I𝑛+1) .

In addition, recall that the normal bundle of 𝑍 in 𝑋 is 𝑁𝑍𝑋 = (I/I2)∨, and that for a
smooth embedding, the map Sym𝑛(I/I2) Ð→ I𝑛/I𝑛+1 is an isomorphism. Thus, when
𝑍 ↪̸ 𝑋 is smooth, there is an isomorphism 𝐸𝑍𝑋 ≅ P𝑁𝑍𝑋 , where P(E) = Proj

𝑋
(SymE∨) is

the projectivization of E .
One source of intuition for blow-ups is that they resolve singular or otherwise “bad”

loci. If we were working with manifolds, we might mimic this process by cutting out a
tubular neighborhood of 𝑍 and taking a quotient of the resulting sphere bundle in 𝑁𝑍𝑋 ,
thus replacing 𝑍 by a projectivization of 𝑁𝑍𝑋 and leaving the complement untouched.
We conclude this discussion with an important example:

Example 2.4. Consider the blow-up of 0 inside A𝑛
𝑘
= Spec𝐴, where 𝐴 = 𝑘[𝑥1, . . . , 𝑥𝑛].

Then 𝐼 = (𝑥1, . . . , 𝑥𝑛), and Bl0A𝑛𝑘 = Proj⊕𝑛≥0 𝐼𝑛. The surjection of graded rings

𝐴[𝑦1, . . . ,𝑦𝑛]Ð→⊕
𝑛≥0

𝐼𝑛
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sending 𝑦𝑖 ↦ 𝑥𝑖 in degree 1 exhibits Bl0A𝑛𝑘 as a closed subscheme of Proj𝐴[𝑦1, . . . ,𝑦𝑛] =
A𝑛
𝑘
× P𝑛−1, cut out by a set of homogenous polynomials defining the kernel of the above

map. The polynomials 𝑥𝑖𝑦 𝑗 − 𝑥 𝑗𝑦𝑖 , for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, suffice [Har77, 7.12.1].
In particular, Bl0A𝑛 is isomorphic to the total space of O(−1) on P𝑛−1, and the excep-

tional locus is a copy of P𝑛−1 sitting as the zero section. For𝑛 = 2, this results in the famous
picture of a twisted “ribbon” over a plane. We’ll return later to the case of blowing up the
zero section of a trivial vector bundle, for which the picture is quite similar.
Deformation to the Normal Bundle. As before, the normal cone of 𝑍 ↪̸ 𝑋 is

𝐶𝑍𝑋 = Spec
𝑍
⊕
𝑛≥0
I𝑛/I𝑛+1 Ð→ 𝑍

, and the normal bundle (as a vector bundle on 𝑍 ) is

𝑁𝑍𝑋 = Spec
𝑍
(SymI/I2)Ð→ 𝑍 .

A key construction in intersection theory is deformation to the normal cone, which allows
one to replace 𝑍 ↪̸ 𝑋 with the zero section of 𝑍 in 𝐶𝑍𝑋 [Ful84, 5]. This tool allows the
nice properties of the normal cone to be levereged in constructing intersection products
and Gysin morphisms. In our case, we need a similar construction for smooth (or even
regular) embeddings which deforms 𝑍 ↪̸ 𝑋 to the zero section of 𝑍 in 𝑁𝑍𝑋 .
Starting with 𝑖1∶𝑍 ↪̸ 𝑋 in Sm𝑆 , for a qcqs base scheme 𝑆 , we want to get a family

𝑍 ×𝑆 A
1 𝐷𝑍𝑋

A1
𝜋2

𝑖

such that the fiber at 𝑡 = 0 is 𝑖0∶𝑍 ↪̸ 𝑁𝑍𝑋 and the fiber at 𝑡 = 1 is 𝑖1∶𝑍 ↪̸ 𝑋 .
To start, consider

Bl𝑍×𝑆{0}(𝑋 ×𝑆 A
1)

𝜋
Ð→ 𝑋 ×𝑆 A

1 Ð→ A1.

Over 𝑡 = 0, the fiber is 𝜋−1 (𝑋 ×𝑆 {0}). This contains the exceptional divisor

P (𝑁𝑍×{0}𝑋 ×A1) = P(𝑁𝑍𝑋 ⊕O)

along with Bl𝑍×{0} (𝑋 × {0}). These two subschemes are joined along a copy of P(𝑁𝑍𝑋),
which is the exceptional divisor of the latter. The former is the union of 𝑁𝑍𝑋 , as the zero
section, along with P(𝑁𝑍𝑋), which is the section at∞. We want the inclusion

𝑍 × {0}Ð→ 𝑋 × {0}Ð→ Bl𝑍×{0}(𝑋 ×A1)

to be the zero section of 𝑁𝑍𝑋 , i.e. the zero section of the exceptional divisor. So, define

𝐷𝑍𝑋 = Bl𝑍×𝑆{0}(𝑋 ×𝑆 A
1) − Bl𝑍×𝑆{0} (𝑋 ×𝑆 {0}) .

Thus, the fiber of 𝐷𝑍𝑋 Ð→ A1 at 0 is P(𝑁𝑍𝑋 ⊕ O) − P(𝑁𝑍𝑋) ≅ 𝑁𝑍𝑋 , and the fiber of
the closed inclusion 𝑍 ×𝑆 A1 Ð→ 𝐷𝑍𝑋 at 0 is the zero-section embedding into the normal
bundle. However, at 𝑡 = 1, 𝜋−1(𝑋 × {1}) ≅ 𝑋 × {1}, so the fiber is 𝑍 ↪̸ 𝑋 as needed.
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3. Proof of the Purity Theorem

Finally, we are ready to state and prove the purity theorem. Our presentation roughly
follows [AE16, 7] or [Nar14]. Throughout, fix a qcqs base scheme 𝑆 .

Theorem 3.1 (Purity). Let 𝑍 ↪̸ 𝑋 be a closed embedding in Sm𝑆 , and let 𝜈𝑍 ∶𝑁𝑍𝑋 Ð→ 𝑍 be
the normal bundle. There is an natural A1-equivalence

𝑋

𝑋 −𝑍
≃Th(𝜈𝑍).

Here,Th is the Thom space: given a vector bundle E Ð→ 𝑋 , we define

Th(E) B
E

E −𝑋
,

where 𝑋 ↪ E is the zero section and this is the cofiber in SpcA
1

𝑆 .
Per the discussion on deformation to the normal bundle, we can consider our family

𝑍 ×𝑆 A
1 Ð→ 𝐷𝑍𝑋

over A1. Looking at the fibers over 𝑡 = 0, 1 and taking quotients gives the morphisms

𝑖0∶Th(𝜈𝑍) =
𝑁𝑍𝑋

𝑁𝑍𝑋 −𝑍
Ð→

𝐷𝑍𝑋

𝐷𝑍𝑋 −𝑍 ×𝑆 A1

and
𝑖1∶

𝑋

𝑋 −𝑍
Ð→

𝐷𝑍𝑋

𝐷𝑍𝑋 −𝑍 ×𝑆 A1 .

We want to show that these two maps are always A1-equivalences, giving the natural
equivalence in the statement of Theorem 3.1.
First, we can directly check that all is good for the case of trivial vector bundles:

Lemma 3.2. Purity holds for the zero section 𝑍 ↪̸ A𝑛𝑍 = 𝑍 ×𝑆 A
𝑛,

Proof. In this case, the normal bundle 𝑁𝑍A
𝑛
𝑍 is the trivial bundle on 𝑍 . Also, the blowup

of A𝑛𝑍 ×A1 at the zero section 𝑍 × {0} is isomorphic to the total space of O(−1) over P𝑛𝑍 ,
and the image of Bl𝑍 A𝑛𝑍 is the same bundle over a copy of P𝑛−1𝑍 embedded at∞. Thus,

𝐷𝑍A
𝑛𝑍 ≅ O(−1)∣

A𝑛
𝑍

,

and the map 𝐷𝑍A
𝑛
𝑍 Ð→ A

𝑛 is an A1-bundle. The deformation family 𝑍 ×𝑆 A1 Ð→ 𝐷𝑍A
𝑛
𝑍 is

then the inclusion of the fiber over the zero section of our original trivial bundle. Clearly,
as the fibers over 0 and 1 are both fibers of a vector bundle, we find that 𝑖0 and 𝑖1 are
A1-equivalences, as desired. □

As it turns out, all closed immersions reduce to this case.
6



Definition 3.3. A smooth pair (𝑋,𝑍) is a closed embedding 𝑍 ↪̸ 𝑋 in Sm𝑆 . A map of
smooth pairs (𝑋,𝑍)Ð→ (𝑋 ′, 𝑍 ′) is a Cartesian square

𝑍 𝑉 ′

𝑍 ′ 𝑋 ′.

Such a map is Nisnevich if 𝑓 ∶𝑋 Ð→ 𝑋 ′ is étale and 𝑓 −1𝑍 ′ Ð→ 𝑍 ′ is an isomorphism.

Note that a map of smooth pairs being Nisnevich implies the left square

𝑈 ×𝑋 ′ 𝑋 𝑋 𝑓 −1𝑍 ′

𝑈 B 𝑋 ′ −𝑍 ′ 𝑋 ′ 𝑍 ′
≅𝑓

is a distinguished square.
Smooth pairs can be locally characterized by the following, due to Grothendieck.

Proposition 3.4. Let 𝑖 ∶𝑍 ↪̸ 𝑋 be a smooth pair, with codimension 𝑐 along 𝑍 . Then there is
a Zariski cover

{𝑈𝑖 Ð→ 𝑋}𝑖∈𝐼 .

and set of étale morphisms
{𝑈𝑖 Ð→ A

𝑛𝑖
𝑆
}
𝑖∈𝐼

such that for all 𝑖 , there is linear inclusion A𝑛𝑖−𝑐𝑆 Ð→ A𝑛𝑖𝑆 giving rise to a Cartesian square

𝑈𝑖 ×𝑋 𝑍 𝑈𝑖

A𝑛𝑖−𝑐𝑆 A𝑛𝑖𝑆 .

⌟

Proof. See [GR02, II.4.10]. □

In addition, call a map of smooth pairs (𝑋,𝑍)Ð→ (𝑋 ′, 𝑍 ′) weakly excisive if the square

𝑍
𝑋

𝑋 −𝑍

𝑍 ′
𝑋 ′

𝑋 ′ −𝑍 ′

is cocartesian in SpcA
1

𝑆 . As 𝑍 Ð→ A1
𝑍 has contractible cofiber, showing the maps

(𝑁𝑍𝑋,𝑍)
𝑖0
Ð→ (𝐷𝑍𝑋,A

1
𝑍)

𝑖1
←Ð (𝑋,𝑍)

of smooth pairs are weakly excisive suffices to prove the purity theorem. We start with
the following lemmas: Say that purity holds for (𝑋,𝑍) if 𝑖0, 𝑖1 as above are weakly excisive.
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Lemma 3.5. Say (𝑋,𝑍) is a smooth pair and {𝑈𝑖 Ð→ 𝑋} is a Zariski cover such that purity
holds for

(𝑈𝑖1 ×𝑋 ⋯×𝑋 𝑈𝑖𝑛 , 𝑍 ×𝑋 𝑈𝑖1 ×𝑋 ⋯×𝑋 𝑈𝑖𝑛)

for all tuples 𝑖1, . . . , 𝑖𝑛. Then purity holds for (𝑋,𝑍).

Proof. Write (𝑈●, 𝑍●) Ð→ (𝑋,𝑍) for the simplicial object associated to this cover. By as-
sumption on 𝑖1 we have a simplicial cocartesian diagram

𝑍● 𝑈●/(𝑈● −𝑍●)

𝑍● ×𝑆 A1 𝐷𝑍●𝑈●/(𝐷𝑍●𝑈● −𝑍● ×𝑆 A1)

Taking geometric realization gives the cocartesian square on the right,

∣𝑍●∣ ∣𝑈●/(𝑈● −𝑍●)∣ ≃ 𝑍 𝑋 /(𝑋 −𝑍)

∣𝑍● ×𝑆 A1∣ ∣𝐷𝑍●𝑈●/(𝐷𝑍●𝑈● −𝑍● ×𝑆 A1)∣ 𝑍 ×𝑆 A
1 𝐷𝑍𝑋 /(𝐷𝑍𝑋 −𝑍 ×𝑆 A

1)

which shows 𝑖1 is weakly excisive for (𝑋,𝑍). The proof is similar for 𝑖0. □

For the next, note the following observations of [Hoy17, 3.19],

(𝑋,𝑍)
𝑓
Ð→ (𝑋 ′, 𝑍 ′)

𝑔
Ð→ (𝑋 ′′, 𝑍 ′′)

are morphisms of smooth pairs, then

(a) when 𝑓 is weakly excisive, 𝑔 is weakly excisive iff 𝑔𝑓 is, by [Lur09, 4.4.2.1], and

(b) if 𝑔∶𝑍 ′ Ð→ 𝑍 ′′ is an A1-equivalence and 𝑔 and 𝑔𝑓 are weakly excisive, then 𝑓 is
weakly excisive, as

𝑍 ′

𝑍
≃
𝑍 ′′

𝑍
≃
𝑋 ′′/(𝑋 ′′ −𝑍 ′′)
𝑋 /(𝑋 −𝑍)

≃
𝑋 ′/(𝑋 ′ −𝑍 ′)
𝑋 /(𝑋 −𝑍)

,

where the last equivalence holds because in the respective square for𝑍 , contractibil-
ity of cof(𝑍 ′ Ð→ 𝑍 ′′) implies 𝑋 ′′/(𝑋 ′′ −𝑍 ′′) ≃ 𝑋 ′/(𝑋 ′ −𝑍 ′).

Lemma 3.6. If (𝑉 ,𝑍)Ð→ (𝑋,𝑍) is a Nisnevich morphism of smooth pairs, then purity holds
for (𝑉 ,𝑍) iff it holds for (𝑋,𝑍).
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Proof. First, observe that Nisnevichmorphisms of smooth pairs areweakly excisive. Recall
that if𝑈 B 𝑋 −𝑍 , then

𝑈 ×𝑋 𝑉 𝑉

𝑈 𝑋

⌟

is a distinguished square, so by Proposition 1.5, is cocartesian. Therefore, we have a tau-
tological equivalence 𝑍 = 𝑍 and an equivalence

𝑉

𝑉 −𝑍
=

𝑉

𝑈 ×𝑋 𝑉

≃
Ð→

𝑋

𝑈
=

𝑋

𝑋 −𝑍
.

The cofibers of both these maps are contractible, as needed.
Now, consider the diagram

(𝑁𝑍𝑉 ,𝑍) (𝐷𝑍𝑉 ,A
1
𝑍) (𝑉 ,𝑍)

(𝑁𝑍𝑋,𝑍) (𝐷𝑍𝑋,A
1
𝑍) (𝑋,𝑍)

𝑖0 𝑖1

𝑖0 𝑖1

As all the vertical arrows are Nisnevich morphisms, they are weakly excisive. The lemma
follows from observation (a) above: if for example, the maps on the top row are weakly
excisive, then (𝑁𝑍𝑉 ,𝑍)Ð→ (𝑁𝑍𝑋,𝑍) and the composite

(𝑁𝑍𝑉 ,𝑍)Ð→ (𝐷𝑍𝑉 ,A
1
𝑍)Ð→ (𝐷𝑍𝑋,A

1𝑋)

are weakly excisive, so the bottom 𝑖0 is excisive. The remaining cases are similar. □

We now have the tools to prove that purity holds for all smooth pairs (𝑋,𝑍).

Proof. By Lemma 3.5 and considering a cover {𝑈𝑖 Ð→ 𝑋} as in Proposition 3.4, it suffices to
show that if (𝑋,𝑍) Ð→ (A𝑛,A𝑚) is a map of smooth pairs with 𝑋 Ð→ A𝑛 étale, then purity
holds for (𝑋,𝑍). Note that this map is not in general Nisnevich.
Following [MV99, 2.28], let 𝑐 = 𝑛 −𝑚 and define 𝑍 ×𝑆 A𝑐 Ð→ A𝑛 to be the product of

𝑍 Ð→ A𝑚 with idA𝑐 . Because the former map is étale, we know

𝑍 ×A𝑚 𝑍 ⊆ 𝑋 ×A𝑛 (𝑍 ×A
𝑐),

the fiber of the projection 𝑋 ×A𝑛 (𝑍 × A𝑐) Ð→ A𝑛 over A𝑚, is the disjoint union of the
diagonal embedding 𝑍 Ð→ 𝑍 ×A𝑚 𝑍 and a closed subscheme 𝑌 ↪̸ 𝑋 ×A𝑛 (𝑍 ×A𝑐). Define
𝑈 B 𝑋 ×A𝑛 (𝑍 × A𝑐) − 𝑌 ; now projection gives étale maps 𝑝 ∶𝑈 Ð→ 𝑋 and 𝑞∶𝑈 Ð→ 𝑍 × A𝑐

such that 𝑝−1𝑍 ≅ 𝑍 and 𝑞−1𝑍 ≅ 𝑍 .2 Thus, we have Nisnevich maps (𝑈 ,𝑍) Ð→ (𝑋,𝑍) and
(𝑈 ,𝑍)Ð→ (𝑍 ×𝑆 A𝑐, 𝑍). Purity holds for (𝑍 ×𝑆 A𝑐, 𝑍) by Lemma 3.2, so by Proposition 3.6,
purity holds for (𝑈 ,𝑍), whence it holds for (𝑋,𝑍), thus completing the proof. □

2Note that the fiber over 𝑍 of the projection 𝑋 ×A𝑛 (𝑍 ×A𝑐)Ð→ 𝑋 is 𝑍 ×A𝑚 𝑍 because (𝑋,𝑍)Ð→ (A𝑛,A𝑚) is
a map of smooth pairs, and likewise for 𝑞−1𝑍 ; in effect we are “correcting” this fiber so that we can replace
this map with a Nisnevich map of smooth pairs.
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Intuition and Applications. One source of intuition for this theorem is to consider 𝑍
and𝑋 being smooth manifolds. Then, the tubular neighborhood theorem states that 𝑁𝑍𝑋

embeds as an open subset of 𝑋 :

𝑁𝑍𝑋 −𝑍 𝑁𝑍𝑋
𝑁𝑍𝑋

𝑁𝑍𝑋 −𝑍

𝑋 −𝑍 𝑋
𝑋

𝑋 −𝑍

≅

Thus, this is the motivic analog of the tubular neighborhood theorem.
This is used in defining, for instance, the Gysin sequence. In the setting of intersection

theory, one can define flat pullback on algebraic cycles associated to a flat map 𝑓 ∶𝑋 Ð→ 𝑌

of relative dimension 𝑟 :

𝑓 ∗∶𝐴𝑘𝑌 Ð→ 𝐴𝑘+𝑟𝑋
[𝑍 ]z→ [𝑓 −1𝑍 ].

When 𝑓 is the projection map of a vector bundle 𝜋 ∶𝐸 Ð→ 𝑋 (and 𝑟 is the rank of 𝐸 over
𝑋 ),then flat pullback is an isomorphism 𝜋∗∶𝐴𝑘−𝑟𝑋 Ð→ 𝐴𝑘𝐸 [Ful84, 3.3]. Thus, we can define
a Gysin map 𝐴𝑘𝐸 Ð→ 𝐴𝑘−𝑟𝑋 associated to the zero section 𝑠 ∶𝑋 Ð→ 𝐸 by 𝑠∗(𝛽) = (𝜋∗)−1𝛽 .
Deformation to the normal bundle allows for a generalization in the case of a regular

embedding 𝑖 ∶𝑍 Ð→ 𝑋 of codimension 𝑟 : the Gysin homomorphism is then the composite

𝐴𝑘𝑋 Ð→ 𝐴𝑘𝑁𝑍𝑋
𝑠
∗
Ð→ 𝐴𝑘−𝑟𝑍,

where the first map is constructed using this deformation, and the second is the Gysin
homomorphism associated to a vector bundle.
In topology, the tubular neighborhood theorem alongwith the Thom isomorphism gives

an isomorphism 𝐻
𝑖−𝑟
(𝑍 ;𝑘) Ð→ 𝐻

𝑖
(Th(𝜈𝑍);𝑘), which can be used to construct the Gysin

sequence. Thus, as one expects, a major consequence of the purity theorem is in estab-
lishing the Gysin long exact sequence in motivic homotopy theory.
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