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The theory of formal groups both has historical connections to various domains of al-
gebraic geometry and number theory, as well as a fundamental centrality to the chromatic
picture of stable homotopy theory. The goal is to introduce formal groups, discuss how
one thinks about and works with these objects, defineM𝑓 𝑔, the moduli stack of formal
groups, and explain key results on the global structure of this stack. While we will ap-
proach this in fair generality, at times applications towards chromatic homotopy theory
will be highlighted.
This is an expository final paper for a tutorial on stacks and moduli, with Taeuk Nam.

All mistakes are my own; reach out to me if you spot anything!

1. An Introduction to Formal Schemes

First Impressions. Recall that a “ring” is a commutative, unital ring. Write CAlg𝑅 for
the category of commutative 𝑅-algebras. To us, an 𝑅-scheme is a functor CAlg𝑅 Ð→ Set
satisfying Zariski descent and with an open cover by affine schemes.1
In any case, our discussion of formal groups necessitates that we first step into theworld

of formal schemes. This provides the right framework to capture fine infinitesimal details.

Definition 1.1. A formal scheme is a small filtered colimit of affine schemes.

As a brief categorical remark, the category of formal schemes has all small colimits and
the inclusion of schemes into formal schemes preserves finite colimits [Str00, Prop. 4.7].

Date: December 15, 2022.
1Some sources, notably [Pst20], require the stronger condition of satisfying étale descent, but the difference
will be minor for our usage; most important phenomona will be defined Zariski-locally anyway.
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Now for some motivating examples. Let 𝑍 = Spec(𝐴/𝐼) ↪̸ 𝑋 = Spec(𝐴) be a closed
embedding of affine 𝑅-schemes. The formal completion of 𝑋 at 𝑍 is

𝑋∧𝑍 B colim𝑛Hom(𝐴/𝐼𝑛,−).

That is, the 𝐵-points of 𝑋∧𝑍 are 𝐵-points of 𝑋 which kill some power of 𝐼 ; this constitutes
infinitesimal fuzz around 𝑍 . If we equip 𝐴 with the 𝐼 -linear topology, then this colimit is
equivalently continuous homomorphisms from𝐴 to a𝑅-algebra𝐵, where the latter is given
the discrete topology. Thus, we can fortuitiously think of formal schemes as schemes
which “care about the topology,” motivating the following.

Definition 1.2. Let 𝐴 be an 𝑅-algebra equipped with an 𝐼 -linear topology, for some ideal
𝐼 ≤ 𝐴. The formal spectrum Spf(𝐴) is the sheaf of affine 𝑅-schemes given by

Spf(𝐴)(𝐵) B Homcts(𝐴,𝐵) ≅ colim𝑛Hom(𝐴/𝐼𝑛, 𝐵).

Note that the formal spectrum only depends on the topology on𝐴, not on the particular
ideal; for instance, we could always replace 𝐼 by 𝐼 2, or replace𝐴 by it’s completion𝐴 = 𝐴∧𝐼
with the limit topology, and not change anything. With this, we define formal affine 𝑛-
space over Spec𝑅 as Â𝑛𝑅 B Spf(𝑅[[𝑥1, . . . , 𝑥𝑛]]), where 𝑅[[𝑥1, . . . , 𝑥𝑛]] is given the 𝔪 =
(𝑥1, . . . , 𝑥𝑛)-adic topology.
To better grasp this definition, consider the difference between A1

𝑘
, Spec𝑘[[𝑥]], and

Â1
𝑘
B Spf 𝑘[[𝑥]] for 𝑘 a field. A1

𝑘
is of course a line over Spec𝑘 , and we should think

of Spec𝑘[[𝑥]] as a formal disk around the origin of A1
𝑘
. However, for a 𝑘-algebra 𝐵, the

𝐵-points of Â1
𝑘
are

Â1
𝑘(𝐵) = Homcts(𝑘[[𝑥]], 𝐵) = {𝑏 ∈ 𝐵 ∣ 𝑏 nilpotent} .

Thus, while Spec𝑘[[𝑥]] is like a formal disk (in terms of Zariski spectra, this has one
generic point corresponding to the disk around the origin), whereas Â1

𝑘
is just the infini-

tesimal fuzz around the origin. One should think of this as being much smaller.

Miscellaneous Useful Results. Let us note some facts which will be useful later. Recall
that for a Zariski sheaf (𝑋,O𝑋), the ring of global sections is Γ(𝑋,O𝑋) = Hom𝑠ℎ(𝑋,A1). If
𝑋 = Spec𝑅 is affine, then Γ(𝑋,O𝑋) ≅ 𝑅, and this characterizes affine schemes.

Proposition 1.3. Let 𝐴 be a topological ring with the 𝐼 -adic topology. Then we have

Γ(Spf(𝐴),OSpf(𝐴)) ≅ 𝐴∧𝐼 .

Proof. Recall the presentation of Spf(𝐴) ≅ colim𝑛 Spec(𝐴/𝐼𝑛). Thus, we have

Hom𝑠ℎ(Spf𝐴,A1) ≅ lim
𝑛

Hom𝑠ℎ(Spec𝐴/𝐼𝑛,A1) ≅ lim
𝑛
𝐴/𝐼𝑛 = 𝐴∧𝐼 .

□
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In fact, this gives a canonical monomorphism Spf𝐴 Ð→ Spec𝐴; we recognize this for
𝐴 = 𝑘[[𝑥]] as the inclusion of the infinitesimal neighborhood of 0 into the formal disk.

Proposition 1.4. Let 𝐴 be a 𝐼 -complete 𝑅-algebra. There is a bijection

HomSpec𝑅(Spf𝐴, Â1
𝑅) ≅ {𝑥 ∈ 𝐴∣𝑥𝑛 Ð→ 0} .

(The right-hand side are “topologically nilpotent.”)

Proof. By the previous proposition, maps Spf𝐴 Ð→ A1
𝑅 are in bijection with 𝐴, because 𝐴

is complete; thus it suffices to see which of these factor the monomorphism Â1
𝑅 Ð→ A1

𝑅 .
By our presentation of Spf𝐴, we see that 𝑥 ∈ 𝐴 determines a map to Â1

𝑅 if it is nilpotent
modulo 𝐼𝑛 for all 𝑛; a quick sanity check shows this is equivalent to the condition 𝑥𝑛 Ð→ 0
in the adic topology. □

Corollary 1.5. Maps from Â𝑛𝑅 B (Â1
𝑅
)×𝑛 Ð→ Â1

𝑅 are in bijection with elements of the ideal
of power series in 𝑅[[𝑥1, . . . , 𝑥𝑛]] with nilpotent constant term.

Proof. We can describe Â𝑛𝑅 as Spf 𝑅[[𝑥1, . . . , 𝑥𝑛]], where the latter ring is viewed in the𝔪 =
(𝑥1, . . . , 𝑥𝑛)-adic toplogy. The topologically nilpotent elements in this ring are precisely
those with nilpotent constant term. □

2. Formal Groups, Formal Group Laws, and Lie Algebras

As one might expect, a formal group is but a group object in formal schemes. For our
purposes, we’ll be slightly more restrictive: we want our formal groups to be commutative
and resemble the tangent spaces of 1-dimensional Lie groups.2

Definition 2.1. A formal group over Spec𝑅 is a commutative group object in formal
schemes which is Zariski-locally isomorphic to Â1

𝑅 as a formal scheme.

The goal for the remainder of this paper is to develop tools for how to think of these
objects and explain some of what is known about their moduli and applications.

Formal Group Laws. Fix a ring 𝑅, viewed as a base Spec𝑅. Let us first consider the case
of formal groups𝐺 over𝑅which are isomorphic as formal schemes to𝐺 ≅ Â1

𝑅 = Spf 𝑅[[𝑥]].
Note that the group structure, given by maps

Spf 𝑅[[𝑥]]×Spec𝑅 Spf 𝑅[[𝑥]]Ð→ Spf 𝑅[[𝑥]]
Spec𝑅 Ð→ Spf 𝑅[[𝑥]]

come from 𝑅-algebra maps

𝑅[[𝑥]]Ð→ 𝑅[[𝑥,𝑦]]
𝑅[[𝑥]]Ð→ 𝑅.

2Apparently, Tomer Schlank has at one point tried to consider the applicability of 2-dimensional formal
groups to homotopy theory, but for trivial reasons this isn’t that much more effective.
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The first map is determined by the image of 𝑥 , which is a power series 𝐹 ∈ 𝑅[[𝑥,𝑦]],
and the second sends 𝑥 ↦ 0. By convention, we write 𝑎 +𝐹 𝑏 = 𝐹(𝑎,𝑏) ∈ 𝐵 for the group
addition on the 𝐵-points of𝐺 (which are just nilpotent elements of 𝐵). Note that the group
axioms (actually, just the axioms of a commutative monoid) now require that

(1) 𝑎 +𝐹 𝑏 = 𝑏 +𝐹 𝑎,
(2) 𝑎 +𝐹 0 = 𝑎,
(3) 𝑎 +𝐹 (𝑏 +𝐹 +𝑐) = (𝑎 +𝐹 𝑏) +𝐹 𝑐 .

This implies 𝐹 has the form 𝑥 + 𝑦 + higher order terms. In addition, a power series is
invertible under composition if and only if it has zero constant term and unit linear term
and either this or the fact that the 𝐵-points of 𝐺 are nilpotents implies such an addition
on 𝐺(𝐵) has inverses; i.e. it defines an honest sheaf of abelian groups.

Definition 2.2. Any power series 𝐹 ∈ 𝑅[[𝑥,𝑦]] satisfying conditions (1)-(3) above is called
a formal group law over 𝑅. The formal group associated to 𝐹 is 𝐺𝐹 B Spf 𝑅[[𝑥]], with the
group structure on 𝐺𝐹(𝐵) given by +𝐹 .
The preceding discussion and Corollary 1.5 show that all formal group structures on Â1

𝑅

arise as 𝐺𝐹 for some f.g.l. 𝐹 . Thus, all formal group structures on Â1
𝑅 are coordinatizable.

Some examples of formal group laws are the additive formal group law, 𝐹𝑎(𝑥,𝑦) = 𝑥 +𝑦
and the multiplicative formal group law 𝐹𝑚(𝑥,𝑦) = (1 + 𝑥)(1 +𝑦) = 𝑥 +𝑦 + 𝑥𝑦. These both
have arise naturally in chromatic homotopy theory.
In addition, we define for every 𝑛 ∈ Z the 𝑛-series of 𝐹 , [𝑛]𝐹(𝑥) ∈ 𝑅[[𝑥]], which corre-

sponds by Corollary 1.5 to the map ×𝑛∶𝐺𝐹 Ð→𝐺𝐹 . These will meow a reappearance.

Lie Algebras and Coordinatizability. With this in hand, we can give a more concrete
equivalent definition of formal groups.

Definition 2.3. A formal group over Spec𝑅 is a Zariski sheaf 𝐺 ∶CAlg𝑅 Ð→ Ab such that
there exist 𝑟1 +⋯ + 𝑟𝑛 = 1 ∈ 𝑅 with 𝐺 ≅𝐺𝐹𝑖 over Spec𝑅[𝑟−1𝑖 ].
Thus, formal groups are Zariski-locally coordinatizable, but not all formal groups are

coordinatizable globally. For example, let L Ð→ Spec𝑅 be a nontrivial line bundle, and let
L̂ be the formal completion along the zero section, with the addition inherited from L.
This is locally isomorphic to 𝐺𝑎 B 𝐺𝐹𝑎 , but is only globally isomorphic to such if L was
trivial. In general, the obstruction to coordinatizability is having nontrivial “transition
maps,” and the Lie algebra of a formal group allows us to measure this obstruction.

Definition 2.4. The Lie algebra of a formal group 𝐺 over Spec𝑅 is

𝔤 = ker (𝐺(𝑅[𝜖]/𝜖2)Ð→𝐺(𝑅)) .

Notice that for any 𝜆 ∈ 𝑅, the map 𝜖 ↦ 𝜆𝜖 determines an 𝑅-module structure on 𝔤. In
addition, for 𝐺 = 𝐺𝐹 , 𝔤 ≅ 𝜖𝑅[𝜖]/𝜖2 ≅ 𝑅 as 𝑅-modules. Because this is true Zariski-locally
for any 𝐺 , 𝔤 is always an invertible 𝑅-module, giving rise to a line bundle on Spec𝑅.
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Proposition 2.5. This line bundle is trivial if and only if 𝐺 is coordinatizable.

Proof. See [Lur10, 11.7]. The key observation is that the obstruction to 𝐺 being coordi-
natizable is that the Zariski-local isomorphisms 𝐺 ≅ 𝐺𝐹𝑖 may not be compatible; given a
trivialization 𝔤 ≅ 𝑅 however, we can choose them to be compatible. □

Remark 2.6. Another construction associated to a formal group 𝐺 over 𝑅 which is use-
ful to consider is the sheaf of invariant differentials, which is a quasicoherent sheaf on
Spec𝑅. By [Pst20, 5.16], this is isomorphic to the pullback of the relative cotangent com-
plex Ω1

𝐺/ Spec𝑅 along the 0 section, so in a sense this is the dual Lie algebra. The power
of invariant differentials, besides detecting when a formal group is coordinatizable, is in
providing an explicit isomorphism of formal group laws in characteristic zero to 𝐹𝑎. We
will return to this result later, but will black-box the technology.

When first presented in isolation (orwith the chromatically-mindedmotivation of defin-
ing a good theory of the first Chern class for a complex-orientable cohomology theory),
formal group laws can seem ill-motivated. However, this presentation as arising from a
choice of coordinate on Â1

𝑅 makes their nature more apparent. One should imagine the
passage from formal groups to coordinatizable formal groups as that from schemes to
affine schemes, and from coordinatizable formal groups to f.g.l.s as choosing generators.

3. Isomorphisms, Representability, andM𝑓 𝑔

Our invariant definition of formal groups means we get a good notion of homomor-
phisms and isomorphisms of formal groups for free.Here, we want to discuss the cor-
responding notion for formal group laws, as well as the result that the moduli space of
formal groups is affine.

Isomorphisms of Formal Groups and FGLs.

Definition 3.1. A homomorphism of formal group laws 𝜑 ∶ 𝐹 Ð→𝐺 over 𝑅 is a power series
𝜑(𝑥) ∈ 𝑅[[𝑥]] such that

𝜑(𝑎 +𝐹 𝑏) = 𝜑(𝑎) +𝐺 𝜑(𝑏).
𝜑 is an isomorphism if 𝜑 is an invertible (under composition) power series, in which case

𝐺(𝑥,𝑦) = 𝜑(𝐹(𝜑−1(𝑥), 𝜑−1(𝑦))).

It is clear that if 𝜑 invertible, thus inducing an automorphism of Spf 𝑅[[𝑥]] as a formal
scheme, it gives rise to an isomorphism of formal groups 𝐺𝐹 Ð→𝐺𝐺 over Spec𝑅.

Lazard’s Theorem andM𝑓 𝑔. Define the presheaf of sets FGL as follows:

FGL(𝑅) = {𝐹 ∈ 𝑅[[𝑥,𝑦]] ∣ 𝐹 is a formal group law} .

Given a map 𝑓 ∶𝑅 Ð→ 𝑆 of rings, we can pushforward a formal group law 𝐹 over 𝑅 to a f.g.l.
𝑓∗𝐹 over 𝑆 by applying 𝑓 to the coefficients. This gives an isomorphism

𝑓 ∗𝐺𝐹 B 𝐺𝐹 ×Spec𝑅 Spec𝑆 ≅𝐺 𝑓∗𝐹 ,
5



along with the action of FGL on morphisms.

Theorem 3.2. FGL is an affine scheme.

Proof. Consider the ring Z[𝑎𝑖 𝑗] with generators for every pair of nonnegative integers
(𝑖, 𝑗), and let 𝐹(𝑥,𝑦) = ∑𝑎𝑖 𝑗𝑥𝑖𝑦 𝑗 . Let 𝐼 be the ideal generated by the coefficients of
𝐹(𝐹(𝑥,𝑦), 𝑧) − 𝐹(𝑥, 𝐹(𝑦,𝑧)), 𝐹(𝑥,𝑦) − 𝐹(𝑦,𝑥), and 𝐹(𝑥, 0) − 𝑥 ; then 𝐹 defines a formal
group law on 𝐿 B Z[𝑎𝑖 𝑗]/𝐼 . For any ring 𝑅 and power series 𝐹𝑅 ∈ 𝑅[[𝑥,𝑦]] over 𝑅, there is
a ring homomorphism 𝑓 ∶Z[𝑎𝑖 𝑗] Ð→ 𝑅 such that 𝑓∗𝐹 = 𝐹𝑅 ; this passes uniquely to 𝑓 ∶𝐿 Ð→ 𝑅

iff 𝐹𝑅 is a formal group law. Thus, we get Spec𝐿 ≅ FGL. □

The ring L (and the isomorphism Spec𝐿 ≅ FGL, i.e. a universal f.g.l. 𝐹 ) corepresenting
FGL is called the Lazard ring. This ring 𝐿 has a much simpler description:

Theorem 3.3 (Lazard). There is an isomorphism 𝐿 ≅ Z[𝑥1, 𝑥2, . . .] with ∣𝑥𝑖 ∣ = 2𝑖 .

Proof. Omitted: see [Lur10] for a combinatorial proof, [Hop99] for a homological one, and
[Pst20] for a deformation-theoretic approach. The key observation is that in characteristic
0, every formal group law is isomorphic to the additive one, by a unique strict isomor-
phism. A technical lemma known as the Symmetric Cocycle Lemma reduces this theorem
to showing an isomorphism on the graded pieces of the module of indecomposables of
𝐿, which can be done via deformation theory. As a consequence, this isomorphism is far
from explicit. □

By the discussion above, Spec𝐿 ≅ FGL ≅ A∞ admits an action by the (affine) group
scheme G𝑖𝑛𝑣 of invertible power series:

G𝑖𝑛𝑣(𝑅) = {∑
𝑖≥1
𝑎𝑖𝑥

𝑖 ∈ 𝑅[[𝑥]] ∣ 𝑎1 ∈ 𝑅×} .

This group has a semidirect decomposition as “strict” power series

G𝑠𝑖𝑛𝑣(𝑅) = {𝑥 +∑
𝑖≥2
𝑎𝑖𝑥

𝑖 ∈ 𝑅[[𝑥]]} ,

and G𝑚;
G𝑖𝑛𝑣 = G𝑠𝑖𝑛𝑣 ⋊G𝑚 .

Aswewill discuss shortly, strict power series are precisely isomorphisms of formal groups
which “preserve the coordinate.” Meanwhile, the G𝑚-action represents different choices
of coordinate, and corresponds to an (even) grading.3
Clearly, two f.g.l.s 𝐹,𝐺 ∈ FGL(𝑅) are isomorphic iff there is some 𝜑 ∈ G𝑖𝑛𝑣(𝑅) such that

𝜑 ⋅ 𝐹 =𝐺 . Isomorphic f.g.l.s give rise to isomorphic formal groups, inspiring the following
definition/theorem:4

3By convention, this grading is even because of the Koszul sign rule.
4Depending on the source.
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Theorem 3.4. The moduli stack of formal groupsM𝑓 𝑔 is the sheaf of spaces sending 𝑅 ∈
CAlg to the groupoid of formal groups over 𝑅 and their isomorphisms.
There is a morphism FGLÐ→M𝑓 𝑔 sending 𝐹 ↦𝐺𝐹 , which is faithfully flat, affine, and

FGL ×M𝑓 𝑔
FGL ≅ Spec𝐿 ×G𝑖𝑛𝑣 .

Thus, FGLÐ→M𝑓 𝑔 presentsM𝑓 𝑔 as the quotient stack [G𝑖𝑛𝑣/FGL].

One way to interpret the first isomorphism is that an 𝑅-point of the displayed pullback
is a pair of formal group laws 𝐹,𝐺 over 𝑅 along with an isomorphism between them; this
is the same by the previous discussion as a single formal group 𝐹 over 𝑅 along with the
isomorphism 𝜑 sending 𝐹 to 𝐺 .
For a proof that the morphism FGL Ð→ M𝑓 𝑔 gives an atlas ofM𝑓 𝑔, see [Pst20]. Note

thatM𝑓 𝑔 is not an algebraic stack in the traditional sense – Spec𝐿 is infinite-dimensional.
However,M𝑓 𝑔 is a fpqc stack (i.e. it has a fpqc atlas), and it can be recovered as a pro-
algebraic stack. A key preliminary result is the following:

Proposition 3.5. M𝑓 𝑔 × SpecQ ≅ 𝐵G𝑚 × SpecQ.

Proof. In characteristic 0, every formal group is locally isomorphic to 𝐺𝑎, and the auto-
morphism of that group are G𝑚. To see the former fact, note that for any FGL 𝐹 over a
Q-algebra, the “logarithm”

ℓ(𝑥) = ∫
1

𝐹𝑦(𝑥,𝑦)
𝑑𝑥

exists, giving an isomorphism 𝐺𝐹 Ð→𝐺𝑎. □

Thus, the interesting questions arise when considering what happens at a prime 𝑝 .

Quillen’s Theorem and 𝑀𝑈∗. Although this is not a review of the vast body of work
connecting the geometry ofM𝑓 𝑔 to chromatic homotopy theory, a few remarks are war-
ranted. The story starts withQuillen’s theorem: that there is an isomorphism of the Lazard
ring 𝐿 with𝑀𝑈∗. Specifically,𝑀𝑈∗ supports a universal formal group law.
Classically, there is the notion of a complex-orientable cohomology theory 𝐸∗, which

one might motivate as a multiplicative generalized cohomology theory with a choice of
Thom class for complex vector bundles. In particular, these support a good theory of the
first Chern class. A computation with the Atiyah-Hirzeburch spectral sequence shows
that 𝐸∗CP∞ = 𝐸∗BU(1) ≅ 𝐸∗[[𝑡]], with ∣𝑡 ∣ = 2; a choice of such an isomorphism is called a
complex orientation, and is in fact equivalent to a (homotopy class of a) multiplicativemap
of spectra 𝑀𝑈 Ð→ 𝐸. Thus, one can study the behavior of 𝐸∗ by looking at the associated
formal group Spf 𝐸∗CP∞. It turns out that this formal group is always coordinatizable, and
the arithmetic of the associated formal group law encodes a vast amount of information
that can classify such cohomology theories. In essence, the geometry ofM𝑓 𝑔 controls the
behavior of the homotopy category of spectra.
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4. Global Structure: The Height Filtration

As mentioned, the rational picture ofM𝑓 𝑔 is rather boring. Thus, for the next two sec-
tions, fix a prime 𝑝; our goal in this section is to understand (M𝑓 𝑔)(𝑝) =M𝑓 𝑔×SpecZ(𝑝).
Thus, all rings considered are Z(𝑝)-algebras.

Heights of Formal Group Laws. We have the following concrete definition:

Definition 4.1. Let 𝐹 be a f.g.l. over 𝑅. Let 𝑣𝑛 be the coefficient of 𝑥𝑝𝑛 in the 𝑝-series
[𝑝]𝐹(𝑥). 𝐹 has height ≥ 𝑛 if 𝑣0 = 𝑝, 𝑣1, . . . , 𝑣𝑛−1 are all 0, and height exactly 𝑛 if 𝑣𝑛 is
invertible.

The height of a 𝑝-local f.g.l. measures how far away multiplication by 𝑝 is from being
an isomorphism. For example, 𝐹 has height 0 if 𝑝 is invertible, and height at least 1 if
𝑝 = 0. In fact, the additive formal group law has 𝑝-series

[𝑝]𝐹𝑎(𝑥) = 𝑝𝑥 = 0,

and so has height∞, while the multiplicative formal group law has 𝑝-series

[𝑝]𝐹𝑚(𝑥) = (1 + 𝑥)𝑝 − 1 = 𝑥𝑝 + lower order terms,

and so has height 1. Thus, at a prime 𝑝 , the additive and multiplicative formal groups are
not isomorphic.
It is perhaps worthwhile to give a more invariant description of where this notion of

height comes from. Recall that for 𝑅 an F𝑝-algebra we have a Frobenius homomorphism
Frob(𝑟) = 𝑟𝑝 . Taking colimits of affines, we know that given a formal group 𝐺 over 𝑅,
we have an absolute Frobenius Frob𝐺 ∶𝐺 Ð→ 𝐺 fitting into the diagram below. Taking the
induced map into the pullback gives the relative Frobenius Frob𝐺/𝑅 ∶𝐺 Ð→𝐺 which is a map
over Spec𝑅.

𝐺

Frob∗𝑅𝐺 𝐺

Spec𝑅 Spec𝑅
Frob𝑅

Frob𝐺/𝑅
Frob𝐺

⌟

One might think of this as the Frobenius adjusted by “pretwisting” the coefficients. As
an example, for the case of 𝑋 = Â1

𝑅 Ð→ Spec𝑅, we have a very concrete description of
Frob𝑋/ Spec𝑅 : it is induced by the map of rings

𝑅 ⊗𝑅 𝑅[[𝑥]] ≅ 𝑅[[𝑥]]Ð→ 𝑅[[𝑥]]
(𝑠 ⊗∑𝑎𝑖𝑥

𝑖)↦∑𝑠𝑎
𝑝

𝑖 𝑥
𝑖 z→∑𝑠𝑎

𝑝

𝑖 𝑥
𝑖𝑝 .

8



In particular, for 𝐺𝐹 a formal group associated to a f.g.l. 𝐹(𝑥,𝑦) = ∑𝑎𝑖 𝑗𝑥𝑖𝑦 𝑗 over 𝑅, we
have an isomorphism

Frob∗𝑅𝐺𝐹 ≅𝐺𝐹 ′
where 𝐹 ′(𝑥,𝑦) = ∑𝑎𝑝𝑖 𝑗𝑥𝑖𝑦 𝑗 .
With all this in place, we say that a formal group 𝐺 over an F𝑝-algebra is of height at

least 𝑛 if multiplication by 𝑝 factors (uniquely) through the 𝑛-th relative Frobenius. If this
factorization is an isomorphism, 𝐺 has height exactly 𝑛.

𝐺 (Frob𝑛𝑅)∗𝐺

𝐺

Frob𝑛𝐺/𝑅

×𝑝

This description makes clear why the formal additive group has infinite height – the mul-
tiplication by 𝑝 map is zero, and so factors through arbitrarily high powers of relative
Frobenius.

Proposition 4.2. Every formal group over a field 𝑘 has a height 0 ≤ 𝑛 ≤∞. Over a field of
characteristic 𝑝 , there exists a formal group law of height 𝑛 for every 1 ≤ 𝑛 ≤∞.

Now, recall that for any formal group law 𝐹 over 𝑅, the 𝑝-series is

[𝑝]𝐹(𝑥) = 𝑝𝑥 + higher degree terms,

and if this map factors through the 𝑛-th relative Frobenius, we should be able to write this
power series as [𝑝]𝐹(𝑥) = 𝜑(𝑥𝑝

𝑛) for a (unique) 𝜑(𝑥) ∈ 𝑅[[𝑥]]. Being of height exactly 𝑛
tells us that 𝜑 is invertible. Now, letting 𝑣𝑛 be the coefficients of 𝑥𝑝𝑛 in the 𝑝-series, we
recover the original definition of height.

TheHeight Filtration. The vanishing of the elements 𝑣𝑛 as defined above cuts out closed
substacks ofM𝑓 𝑔(𝑝). Importantly, even though these elements depend on the 𝑝-series of
a f.g.l., the ideal they generate is an invariant of the formal group associated to the f.g.l.,
thus allowing for the following definitions:

Definition 4.3. LetM≥𝑛
𝑓 𝑔
B Spec (𝐿(𝑝)/(𝑝, 𝑣1, . . . , 𝑣𝑛−1) /G𝑖𝑛𝑣 ↪̸ M𝑓 𝑔 be the closed sub-

stack of formal groups of height ≥ 𝑛. Let the open complement ofM≥𝑛+1
𝑓 𝑔

beM≤𝑛
𝑓 𝑔
↪M𝑓 𝑔.

Finally, letM=𝑛
𝑓 𝑔
=M≥𝑛

𝑓 𝑔
∩M≤𝑛

𝑓 𝑔
be the substack of formal groups of height exactly 𝑛.

This gives rise to the height filtration, also known as the chromatic filtration, ofM𝑓 𝑔(𝑝)
by closed substacks.

M𝑓 𝑔(𝑝) M𝑓 𝑔
≥1 M𝑓 𝑔

≥2 M𝑓 𝑔
≥3

. . . M𝑓 𝑔
≥∞∣∣∣∣∣

One key result here is the following theorem of Lazard:
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Theorem 4.4. Let 𝐺1,𝐺2 be two formal groups over 𝑘 of height 𝑛, with char𝑘 = 𝑝 . Then
there is a separable extension 𝑓 ∶𝑘 ↪ 𝐾 such that 𝑓 ∗𝐺1 ≅ 𝑓 ∗𝐺2. In particular, any two formal
groups of the same height are isomorphic over a separably closed field.

Proof. See [Goe08, 5.26]. □

Thus, for 1 ≤ 𝑛 ≤ ∞,M𝑓 𝑔
=𝑛 has a single geometric point represented by the formal

group Γ𝑛 over SpecF𝑝 of height 𝑛, and is equivalent as a stack to

M𝑓 𝑔
=𝑛 ≃ 𝐵Aut(Γ𝑛).

The automorphisms of this point are controlled by the Morava stabilizer group.
Overall, the global picture ofM𝑓 𝑔 is rather simple; zoomed-out, there is one geometric

point for every pair of a prime 𝑝 and height 1 ≤ 𝑛 ≤ ∞. The local picture – analyzing
M̂𝑓 𝑔

=𝑛
(𝑝) – is far richer, involving Lubin and Tate’s work on local class field theory and

providing a deep understanding of isomorphisms and deformations of formal groups at
finite heights. As a payoff, one gets intrinsic characterizations of objects like Morava 𝐾-
theory and 𝐸-theory, which are fundamental players in the chromatic picture of stable
homotopy theory, leading to various active veins of modern research.

Acknowledgments

Thanks to Dhilan Lahoti and Tomer Schlank for their helpful insights on this mate-
rial. In addition, a massive thank you to Taeuk Nam for teaching the 2022 Fall tutorial
with incredible dedication, drive, and passion, and for being accessible and supportive
throughout the semester!

References
[Goe08] Paul G. Goerss, Quasi-coherent sheaves on the moduli stack of formal groups, February 2008,

arXiv:0802.0996 [math].
[Hop99] Michael Hopkins, Complex Oriented Cohomology Theories and the Language of Stacks, August 1999.
[Lur10] Jacob Lurie, Chromatic Homotopy Theory (Math 252x), January 2010.
[Pst20] Piotr Pstragowski, Finite Height Chromatic Homotopy Theory (Math 252y), July 2020.
[Str00] Neil P. Strickland, Formal schemes and formal groups, November 2000, arXiv:math/0011121.

Email address: rushil_mallarapu@college.harvard.edu

10

mailto:rushil_mallarapu@college.harvard.edu

	1. An Introduction to Formal Schemes
	2. Formal Groups, Formal Group Laws, and Lie Algebras
	3. Isomorphisms, Representability, and Mfg
	4. Global Structure: The Height Filtration
	Acknowledgments
	References

