
BOUSFIELD LOCALIZATIONS BEFORE LUNCH

RUSHIL MALLARAPU

Contents

1. Localizations of Spectra 1
2. Bousfield Classes 3
3. Arithmetic Localization and Completion 5
4. Fracture Squares 7
5. Glimpses of the Chromatic Realm 8
Acknowledgments 9
References 9

Localization is ubiquitous as a way to solve big problems by reducing them to specific
ones, and as we do homotopy theory, working one “prime” at a time will become natural
and necessary to get things done. The goal is to introduce Bousfield localization of spec-
tra, generalizing localizations and completions from classical algebra. I’ll discuss some
properties and useful results, go through examples of localizing/completing at primes,
and touch on the chromatic picture of stable homotopy theory.
This is the second of two talks I gave at Kan Seminar in Fall 2022, with Tomer Schlank.

All mistakes in these notes are my own. Please reach out to me if you spot anything!

1. Localizations of Spectra

To start, all of the following can be set up in a far more general context. Bousfield’s
original papers – building on Quillen’s homotopical algebra – specifically work with cat-
egories of spaces (vis-á-vis simplicial sets) and spectra. These days, what is normally
called Bousfield localization refers to a model-categorical construction which adds more
weak equivalences without changing cofibrant objects. So, the morally right way to view
this theory is via (reflective) localizations of∞-categories [Lur09, 5.2.7]. In any case, this
presentation will be exceedingly specific to spectra, so much of what follows only gen-
eralizes to presentable stable symmetric monoidal ∞-categories.1 A good place to read
about this is [Law20].
The goal of this section is to get our feet wet with definitions, universal properties,

and constructions with general localizations. Let ℎSp denote the homotopy category of
spectra – pick whichever model of this suits your fancy, CW spectra if you must.

Date: November 7, 2022.
1So all your favorite examples, hopefully.
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Definition 1.1. Let 𝐸 ∈ ℎSp be a spectra, and 𝐸∗ the associated homology theory.2

(a) A map 𝑓 ∶𝐴 → 𝐵 in ℎSp is an 𝐸∗-equivalence if 𝐸∗𝑓 is an isomorphism.

(b) A spectrum 𝐴 ∈ ℎSp is 𝐸∗-acyclic if 𝐸∗𝐴 ≃ 0.

Finally, the following are equivalent:

(1) 𝑋 is 𝐸∗-local,

(2) Every 𝐸∗-equivalence 𝑓 ∶𝐴 Ð→ 𝐵 induces a bijection 𝑓 ∗∶ [𝐵,𝑋 ] Ð→ [𝐴,𝑋 ],

(3) For every 𝐸∗-acyclic 𝐴, we have [𝐴,𝑋 ]∗ = 0.

The following presentation is roughly adapted from [Rav84, §1]. In particular, functo-
riality of localization isn’t immediate in full generality, so we’ll make some concessions.

Definition 1.2. 𝐸∗-localization is a functor 𝐿𝐸 ∶ℎSpÐ→ ℎSp with image in 𝐸∗-local spectra
together with a natural 𝐸∗-equivalence 𝜂∶ idÔ⇒ 𝐿𝐸 .

This implies 𝜂𝑋 ∶𝑋 Ð→ 𝐿𝐸𝑋 is both the terminal 𝐸∗-equivalence from 𝑋 and the initial
𝐸∗-local map under 𝑋 ; if 𝑓 ∶𝑋 Ð→ 𝐵 is an 𝐸∗-equivalence or 𝐶 is 𝐸∗-local, then we have

𝑋 𝐵 𝑋 𝐿𝐸𝑋

𝐿𝐸𝑋 𝐶

𝜂𝑋

𝑔
∃!𝑔

𝑓

∃! 𝑓𝜂𝑋

Remark 1.3. As a formal consequence, any 𝐸∗-equivalence 𝑋 Ð→ 𝑌 with 𝑌 𝐸∗-local is
canonically equivalent to 𝜂𝑋 , so localization is unique. This means that if (𝐿̃𝐸, 𝜂)was some
other functor satisfying our properties, then 𝐿𝐸 ≃ 𝐿̃𝐸 , compatibly with the localization
maps. (This argument is nearly identical to the 𝐸∗-Whitehead theorem below.)

Also, 𝐿𝐸 is idempotent, in that 𝐿𝐸 is equivalent to 𝐿𝐸𝐿𝐸 . This means 𝐸∗-localizing some-
thing 𝐸∗-local does nothing.

Theorem 1.4. 𝐸∗-localization exists for every generalized homology theory.

The proof in Bousfield’s paper is somewhat set-theoretic and goes through the small
object argument [Bou79, 1.12-1.15]. To make a long story short, it uses the fact that ℎSp is
generated under colimits of spheres to find a single spectra which “detects” 𝐸∗-acyclicity.
From there, it’s relatively easy to construct functorial localizations.3
Here are some nice properties of Bousfield localization. I won’t prove most of them;

[Bou79] or [Law20] have most of the proofs, and these are largely formal arguments you
should do in private.

2That is, 𝐸∗𝑋 B 𝜋∗𝐸 ⊗𝑋 for 𝑋 ∈ Sp, and 𝐸∗𝑋 B 𝐸∗Σ∞+ 𝑋 for 𝑋 ∈ Spc.
3This kind of argument is pretty common once you go looking for it.
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Theorem 1.5. (𝐸∗-Whitehead).
If 𝑓 ∶𝑋 Ð→ 𝑌 is an 𝐸∗-equivalence of 𝐸∗-local spectra, then 𝑓 ∶𝑋 ≃ 𝑌 .

Proof. This condition implies that 𝑓 ∗∶ [𝑌,𝑋 ] Ð→ [𝑋,𝑋 ] is a bijection, so we get a unique
map 𝑔∶𝑌 Ð→ 𝑋 such that 𝑔𝑓 = id𝑋 . Now, using that 𝑓 ∗∶ [𝑌,𝑌 ] Ð→ [𝑋,𝑌 ] is also a bijection,
observe that 𝑓 𝑔 and id𝑌 both map to 𝑓 𝑔𝑓 = 𝑓 = 𝑓 ∗ id𝑌 , which tells us that 𝑓 𝑔 = id𝑌 . Thus,
𝑓 is an equivalence as claimed. □

Theorem 1.6. 𝐸∗-local spectra are closed under cofibers, products, retracts, and limits.

(By limit I mean inverse homotopy limit, but I can’t stand this “inverse” v. “direct”
terminology and if someone tries to take limits in the homotopy category directly, they
should be reported to, well, someone probably. This is also why I’m not defining localiza-
tion in the usual∞-categorical way; that’s a construction at the level of Sp, and therefore
is slightly more delicate. Our current coarseness should be fine though.)

Theorem 1.7. 𝐸∗-localization commutes with direct sums, suspension, and cofibers; i.e., if

𝑊 Ð→ 𝑋 Ð→ 𝑌 Ð→ Σ𝑊

is a cofiber sequence, then so is

𝐿𝐸𝑊 Ð→ 𝐿𝐸𝑋 Ð→ 𝐿𝐸𝑌 Ð→ Σ(𝐿𝐸𝑊 ).

Theorem 1.8. If 𝐸 is a ring spectrum and 𝑋 is an 𝐸-module, then 𝑋 is 𝐸∗-local.

Proof. If 𝐴 is 𝐸∗-acyclic and 𝑓 ∶𝐴 Ð→ 𝑋 is any map, we can factor it as

𝐴
𝜂⊗1ÐÐ→ 𝐸 ⊗𝐴 1⊗𝑓ÐÐ→ 𝐸 ⊗𝑋 𝜇Ð→ 𝑋,

and 𝐸 ⊗𝐴 ≃ 0, so 𝑓 is null. Thus, [𝐴,𝑋 ] ≃ 0. □

2. Bousfield Classes

We want to adopt the perspective – partly inspired by the 𝐸∗-Whitehead theorem – that
𝐸∗-localization is “restricting our gaze to everything that 𝐸∗ sees.” In that case, we should
be able to compare what two homology theories “see.” This is the job of Bousfield classes.4

Definition 2.1. Write 𝐸 ∼ 𝐺 if for any 𝑋 ∈ ℎSp, 𝐸∗𝑋 = 0 ⇐⇒ 𝐺∗𝑋 = 0. This is an
equivalence relation on ℎSp. The Bousfield class ⟨𝐸⟩ is the equivalence class of 𝐸 under ∼.

4Much of this theory was developed during the foundations of chromatic homotopy theory – a good portion
of [Rav84] is about comparing Bousfield classes of various spectra which arise in conjunction with the
Adams-Novikov spectral sequence, a gadget which converges to (among other things) the homotopy groups
of the 𝑝-local sphere.
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We can order these equivalence classes as follows: let ⟨𝐸⟩ ≤ ⟨𝐺⟩ if every 𝐺∗-acyclic
spectrum is 𝐸∗-acyclic. In addition, we can define

⟨𝐸⟩ ∧ ⟨𝐹 ⟩ = ⟨𝐸 ⊗ 𝐹 ⟩ and ⟨𝐸⟩ ∨ ⟨𝐹 ⟩ = ⟨𝐸 ⊕ 𝐹 ⟩ .

You should check that these are well-defined; it’s a good exercise in the notions.
Note that this implies

⟨𝐸⟩ ∧ ⟨𝐹 ⟩ ≤ ⟨𝐸⟩ ≤ ⟨𝐸⟩ ∨ ⟨𝐹 ⟩ ,
justifying this meet/join notation.
This is a key consequence of these definitions:

Proposition 2.1. The following are equivalent:

(i) ⟨𝐸⟩ ≤ ⟨𝐺⟩, i.e. there are more 𝐸∗-acyclics than 𝐺∗-acyclics,

(ii) Every 𝐺∗-equivalence is an 𝐸∗-equivalence,

(iii) Every 𝐸∗-local spectrum is 𝐺∗-local.

Thus, if ⟨𝐸⟩ = ⟨𝐺⟩, then 𝐿𝐸 ≃ 𝐿𝐺 , and if ⟨𝐸⟩ ≤ ⟨𝐺⟩, 𝐿𝐸𝐿𝐺 ≃ 𝐿𝐸 , and we get a natural
transformation 𝐿𝐺 Ð→ 𝐿𝐸 . To clarify why, consider the diagonal map in the diagram below:

𝑋 𝐿𝐺𝑋

𝐿𝐸𝐿𝐺𝑋

𝜂
𝐺
𝑋

𝜂
𝐸
𝐿𝐺𝑋

By property (ii), the top map, a𝐺∗-equivalence is an 𝐸∗-equivalence, so the diagonal map
is an 𝐸∗-equivalence. In addition, 𝐿𝐸𝐿𝐺𝑋 is definitely 𝐸∗-local, so this diagonal map is
an 𝐸∗-localization, giving the equivalence 𝐿𝐸𝐿𝐺 = 𝐿𝐸 . Of course, 𝐿𝐺𝐿𝐸 = 𝐿𝐸 , and in the
case that ⟨𝐸⟩ = ⟨𝐺⟩, i.e. when 𝐸∗-locality is the same as 𝐺∗-locality, this tells us that
𝐿𝐸 = 𝐿𝐸𝐿𝐺 = 𝐿𝐺𝐿𝐸 = 𝐿𝐺 . Finally, our natural transformation 𝐿𝐺 Ð→ 𝐿𝐸 for ⟨𝐸⟩ ≤ ⟨𝐺⟩ is a
consequence of either applying 𝐿𝐺 to idÔ⇒ 𝐿𝐸 , or realizing that if 𝐿𝐸 is𝐺∗-local, it admits
a map from the “universal” 𝐺∗-localization, 𝐿𝐺 .
Heuristically, the way to read a statement like ⟨𝐸⟩ ≤ ⟨𝐺⟩ is that𝐺 “sees” finer detail than

𝐸 in ℎSp. One quick north star here is the fact that ⟨0⟩ ≤ ⟨𝑋 ⟩ ≤ ⟨𝑆0⟩ for all 𝑋 ∈ ℎSp; i.e. the
sphere sees everything, and the point sees nothing. Thus, the equivalence 𝐿𝐸𝐿𝐺 = 𝐿𝐸 tells
us that if we want to reduce to what 𝐺 detects and then what 𝐸 detects, we can simply
drop down to 𝐸 to start. Similarly, the map 𝐿𝐺 Ð→ 𝐿𝐸 realizes the fact that if we have
something 𝐺∗-local, then 𝐸∗-localizing is just forgetting more information.

Remark 2.2. It’s worth pointing out that the lattice of Bousfield classes which satisfy
⟨𝐸⟩ ∧ ⟨𝐸⟩ = ⟨𝐸⟩ and have complements is a strict subcollection of all Bousfield classes.
These classes have the potential to behave in weird and unexpected ways, as illustrated
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in [Rav84]. That paper also has a ton of examples of how this notion is used, specifically
in the chromatic world, although I’d claim that what most cool kids5 think when they hear
Morava 𝐸-theory and 𝐾-theory feels quite distant to what appears in Ravenel’s paper.
Finally, some nice properties of Bousfield classes:

Proposition 2.2. If𝑊 Ð→ 𝑋 Ð→ 𝑌 Ð→ Σ𝑊 is a cofiber sequence, then each of ⟨𝑊 ⟩, ⟨𝑋 ⟩, ⟨𝑌 ⟩
is less than the wedge of the other two.

Proof. Note that ⟨Σ𝑛𝑋 ⟩ = ⟨𝑋 ⟩ for all 𝑛 ∈ Z; this is because the sphere is invertible (heck,
Pic(Sp) = Z for precisely this reason). Then, all you need is the five-lemma. □

Proposition 2.3. If𝑀 is a module over a ring 𝐸, then ⟨𝑀⟩ ≤ ⟨𝐸⟩.

Proof. The unit and multiplication on𝑀 make it a retract of 𝐸 ⊗𝑀 . Thus, ⟨𝑀⟩ ≤ ⟨𝐸 ⊗𝑀⟩,
and the latter is less than ⟨𝐸⟩. □

Proposition 2.4. [Rav84, 1.34], [Dev18, 5.8]
Let 𝑋 be a spectrum and 𝑓 ∶Σ𝑑𝑋 Ð→ 𝑋 a self map. Then ⟨𝑋 ⟩ = ⟨𝑓 −1𝑋 ⟩ ∨ ⟨𝐶(𝑓 )⟩.

3. Arithmetic Localization and Completion

Time for some examples! The key ones to be aware of are 𝑝-localization, 𝑝-completion,
and rationalization (here 𝑝 is some prime). Let’s dive right in:
Definition 3.1. For some abelian group𝐺 , theMoore spectrum 𝑆𝐺 is the connective spec-
trum with 𝐻0𝑆𝐺 = 𝜋0𝑆𝐺 =𝐺 and 𝐻𝑖𝑆𝐺 = 0 for 𝑖 ≠ 0. (Here 𝐻∗ is 𝐻Z∗.)
There are also short exact sequences

0 𝐺 ⊗ 𝜋∗𝑋 𝜋∗(𝑆𝐺 ⊗𝑋) Tor(𝐺,𝜋∗−1𝑋) 0

0 Ext(𝐺,𝜋∗+1𝑋) [𝑆𝐺,𝑋 ]∗ Hom(𝐺, 𝜋∗𝑋) 0

which you can think of as analogues of the universal coefficient sequences. They’re proved
exactly as you expect – take a free resolution of 𝐺 , tensor with 𝑆0, and take homotopy.
Two of these three cases for “arithmetic” localizations are pretty easy:

Proposition 3.1. [Bou79, 2.4]
Let 𝐺 = Z(𝐽) for some set 𝐽 of primes. Then (𝐽)-localization of 𝑋 is 𝑋(𝐽) B 𝐿𝑆Z(𝐽 )𝑋 =
𝑆Z(𝐽) ⊗𝑋 and 𝜋∗𝑋(𝐽) ≅ Z(𝐽) ⊗ 𝜋∗𝑋 for every 𝑋 ∈ ℎSp.

Proof. I actually think [BR20, 7.4.10] is a much clearer exposition. The key idea is that the
coefficient sequence gives an iso Z(𝐽)⊗𝜋∗𝑋 Ð→ 𝜋∗(𝑆Z(𝐽)⊗𝑋), which allows us to describe
𝑆Z(𝐽) equivalences as those which are isomorphisms on (𝐽)-local homotopy. Then, be-
cause we have a map 𝑋 Ð→ 𝑆Z(𝐽)⊗𝑋 coming from the ring structure on 𝑆Z(𝐽), over which
𝑆Z(𝐽) ⊗𝑋 is a module, we know that this map is a localization. □

5Read: people who think in terms of stacks, which I should learn to do, as should you.
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Remark 3.2. In particular, when 𝐽 = ∅, this is rationalization; 𝑋Q = 𝑆Q ⊗ 𝑋 , and 𝜋∗𝑋Q
are rational vector spaces. In fact, by Serre’s finiteness theorem, we know 𝑆Q ≃ 𝐻Q (via
a map factoring the rational Hurewicz map if you like), so the rational stable homotopy
category is really the derived category of Q-vector spaces!

We usually call 𝑋(𝑝) = 𝑋({𝑝}) the 𝑝-localization of 𝑋 , for obvious reasons.
Bousfield showed6 that the other useful case comes from localizing with respect to

𝑆0/𝑝 B 𝑆Z/𝑝 . This is somewhat more involved.

Proposition 3.2. [BR20, 7.4.13]
The 𝑝-completion of 𝑋 is

𝑋∧𝑝 B 𝐿𝑆0/𝑝𝑋 = 𝐹(Σ−1𝑆Z/𝑝∞,𝑋).

Here, Z/𝑝∞ = Z [ 1
𝑝
] /Z = colim(Z/𝑝 Ð→ Z/𝑝2 Ð→ ⋯) is the Prüfer 𝑝-group. The function

spectrum is given by

𝐹(Σ−1𝑆Z/𝑝∞,𝑋) = holim (⋯ Ð→ 𝑆0/𝑝3 ⊗𝑋 Ð→ 𝑆0/𝑝2 ⊗𝑋 Ð→ 𝑆0/𝑝 ⊗𝑋) ,

where the maps are induced by the projections Z/𝑝𝑛 Ð→ Z/𝑝𝑛−1.
One way to see this is by looking at the cofiber sequence

Σ−1𝑆Z/𝑝∞ Ð→ 𝑆0 Ð→ 𝑆Z [𝑝−1] Ð→ 𝑆Z/𝑝∞,

and applying 𝐹(−,𝑋), giving

𝐹(𝑆Z[𝑝−1],𝑋) Ð→ 𝐹(𝑆,𝑋) ≃ 𝑋 Ð→ 𝐹(Σ−1𝑆Z/𝑝∞,𝑋) Ð→ Σ𝐹(𝑆Z[𝑝−1],𝑋).

Now, 𝐹(𝑆Z[𝑝−1],𝑋) has homotopy groups which are uniquely 𝑝-divisible, so is 𝑆0/𝑝-
acyclic. Thus, the middle map is an 𝑆0/𝑝-equivalence. Finally, by an inductive argument,
if 𝐴 is 𝑆0/𝑝-acyclic, then 𝐴 ⊗ 𝑆Z/𝑝∞ = 0. Therefore, 𝐹(Σ−1𝑆Z/𝑝∞,𝑋) is 𝑆0/𝑝-local, as

[𝐴, 𝐹(Σ−1𝑆Z/𝑝∞,𝑋)] = [𝐴 ⊗ Σ−1𝑆Z/𝑝∞,𝑋 ] = 0.

Thus, the middle map is an 𝑆0/𝑝-localization. I’m leaving out a lot of details here because
this is rather technical, and people usually don’t think of computing 𝑝-completions in
exactly this manner. However, a useful result is the following:

Proposition 3.3. [Bou79, 2.5]
There is a split short exact sequence for any 𝑋 ∈ ℎSp

0Ð→ Ext(Z/𝑝∞, 𝜋∗𝑋) Ð→ 𝜋∗𝑋∧𝑝 Ð→ Hom(Z/𝑝∞, 𝜋∗−1𝑋) Ð→ 0.

Thus, if 𝜋∗𝑋 is finitely generated in each degree, then 𝜋∗𝑋∧𝑝 ≅ Z∧𝑝 ⊗ 𝜋∗𝑋 .

6Via the rather involved notion of “acyclicity type of a group,”
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This follows by recognizing that 𝜋∗𝑋∧𝑝 = [𝑆0, 𝐹(Σ−1𝑆Z/𝑝∞,𝑋)]∗ ≅ [Σ−1𝑆Z/𝑝∞,𝑋 ]∗,
and applying the cohomological coefficient sequence. When 𝜋∗𝑋 is f.g. the Hom term
vanishes, and some homological algebra recognizes the Ext group as 𝜋∗ ⊗ Z∧𝑝 .
By the way, this also implies that 𝑝-completion isn’t “smashing” – I can’t just tensor

with 𝑆∧𝑝 . This comes down to the fact that 𝑆Z/𝑝∞ isn’t compact, so it’s not dualizable.
An important remark: if𝑋 is connective, then 𝐿𝐻𝐺𝑋 = 𝐿𝑆𝐺𝑋 . This is whywe can identify

𝐿F𝑝𝑆
0 with (𝑆0)∨𝑝 , which you know from the Adams spectral sequence!7 However, for 𝑋

nonconnective, this fails dramatically. In general, ⟨𝐻𝐺⟩ ≤ ⟨𝑆𝐺⟩, so we get a map 𝐿𝑆𝐺 Ð→
𝐿𝐻𝐺 . However, if we let 𝑋 = 𝐾(1), then 𝐾(1)∧𝑝 = 𝐾(1), but 𝐾(1) is F𝑝-acyclic!

4. Fracture Sqares

We have all these localizations, but how do we use them to simplify our study of ℎSp?
This is where fracture theorems come in. To start, something general.

Theorem 4.1. Suppose that 𝐸 and 𝐾 are spectra such that 𝐿𝐾𝐿𝐸𝑋 is always zero – i.e. 𝐸∗-
local objects are 𝐾∗-acyclic. Then, the following is a (homotopy) pullback:

𝐿𝐸⊕𝐾𝑋 𝐿𝐾𝑋

𝐿𝐸𝑋 𝐿𝐸𝐿𝐾𝑋

⌟

Proof. This is adapted from [Law20, 9.26]. The cospan

𝐿𝐸𝑋 Ð→ 𝐿𝐸𝐿𝐾𝑋 ←Ð 𝐿𝐾𝑋

consists of objects which are either 𝐸∗-local or 𝐾∗-local. So, the pullback is 𝐸 ⊕𝐾-local. It
thus suffices to show that the fiber of 𝑋 mapping to the pullback is 𝐸 ⊕𝐾-acyclic, which
is equivalent to showing that

𝑋 𝐿𝐾𝑋

𝐿𝐸𝑋 𝐿𝐸𝐿𝐾𝑋

is a pullback after tensoring everything with 𝐸 ⊕ 𝐾 . After tensoring with 𝐸, the vertical
maps are equivalences, so the diagram is a pullback. After tensoring with 𝐾 , the top map
is an equivalence and the bottom map is zero (as everything is 𝐸∗-local), so the diagram
is also a pullback, as desired. □

7There’s a lot more to say here – in particular, there’s a notion of 𝐸-nilpotent completion which one gets by
taking inverse limits of Adams towers, and a key contribution of Bousfield was working out the conditions
under which the 𝐸-Adams spectral sequence converged to an 𝐸-localization. This is also related to why you
can use the cobar complex to compute localizations, c.f. [MNN17, 2.23].
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One application of this, which Bousfield proved with basically the same argument8, is
the arithmetic fracture square:

Theorem 4.2. Let 𝑋 be any spectrum. There is a pullback

𝑋 ∏
𝑝 prime

𝑋∧𝑝

𝑋Q
⎛
⎝ ∏𝑝 prime

𝑋∧𝑝
⎞
⎠
Q

What the arithmetic fracture square shows is that it’s possible to analyze spectra by
dividing and conquering – once we know what something looks like rationally and 𝑝-
completed at each prime, we win. Thus, the natural question to ask is how can we under-
stand (𝑝)-local spectra? This is the subject of chromatic homotopy theory.

5. Glimpses of the Chromatic Realm

This section is going to be dramatically oversimplified. Depending on who you ask, the
correct construction of the following objects is either complicated or really complicated,
and is one of those stories I suspect is easiest to tell in the language of stacks. That’s a
different talk, so take what follows on a healthy dose of faith.
I’ll start by stating the result: first fix some prime 𝑝 > 0.

Definition 5.1. There exist spectra 𝐾(𝑛) for all integers 𝑛 ≥ 0, with 𝐾(0) = Q and 𝐾(1)
a retract of mod 𝑝 complex 𝐾-theory. In addition, write 𝐿𝑛 for 𝐿𝐾(0)⊕⋯⊕𝐾(𝑛).

Clearly, ⟨𝐾(0) ⊕⋯⊕𝐾(𝑛)⟩ ≥ ⟨𝐾(0) ⊕⋯⊕𝐾(𝑛 − 1)⟩, which implies there are maps
𝐿𝑛 Ð→ 𝐿𝑛−1. The magic powder here is the following, which says that these 𝐾(𝑛) can,
working together, see all of the 𝑝-local stable homotopy category.

Theorem 5.2. (Chromatic Convergence – [Dev18, 1.4]).
Let 𝑋 be a finite 𝑝-local spectrum. Then,

𝑋 ≃ holim(𝐿0𝑋 ←Ð 𝐿1𝑋 ←Ð 𝐿2𝑋 ←Ð ⋯).

A key tenet of chromatic homotopy theory is that we can decompose 𝑝-local spectra
via localizing at “higher primes,” and these spectra you should think of as “detecting these
primes,” in much the same way that Z/𝑝 detects behavior at 𝑝 .
In particular, we can write the 𝑝-local sphere as

𝑆0(𝑝) ≃ holim(⋯ Ð→ 𝐿2𝑆
0 Ð→ 𝐿1𝑆0 Ð→ 𝐿0𝑆0).

8See [hr] for a written-out explanation of why being an equivalence rationally and mod 𝑝 for all 𝑝 implies
being an equivalence integrally.
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Recall that 𝐿0𝑆0 = 𝑆0Q = Q. Thus, the lower layers of this chromatic tower are relatively
simple objects, and as we climb higher and higher, we can see more complicated and
rich information. Level 1 roughly corresponds to things that we can see with topological
𝐾-theory, level 2 can be accessed with elliptic cohomology, and it gets more complicated.
However, there is some hope: as it turns out, something which is 𝐸(𝑛−1)-local is𝐾(𝑛)-

acyclic (the quick and dirty proof I know uses that 𝐸(𝑛 − 1)-localization is smashing, and
𝐾(𝑛) ⊗ 𝐸(𝑛 − 1) ≃ 0 for formal group reasons). That is, 𝐿𝐾(𝑛)𝐿𝑛−1 = 0. Thus, we get the
chromatic fracture square:

𝐿𝑛𝑋 𝐿𝐾(𝑛)𝑋

𝐿𝑛−1𝑋 𝐿𝑛−1𝐿𝐾(𝑛)𝑋

This tells us that we have a chance of putting together the chromatic layers if we know
what the 𝐾(𝑛)-local stable homotopy category looks like.
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