A CONDENSED INTRO TO CONDENSED MATH

RUSHIL MALLARAPU

Contents

1.	Condensation	1
2.	Solidification	2
3.	Continuous Cohomology	3
4.	<i>p</i> -Adic Completion	5
Acknowledgments		6
References		6

Condensed mathematics is a formalism for constructing abelian categories of "topological" objects, and shows up in the computation of [BSSW24] as a means of accessing continuous cohomology. In this talk, we will provide an overview of the information from condensed math necessary for the rest of the seminar, covering condensed sets/abelian groups, solidity and its connection to continuous cohomology, and *p*-complete and *p*-adic complexes of condensed abelian groups.

These are notes from a talk I gave for Babytop, organized by Ishan Levy, Piotr Pstragowski, and Andy Senger. All mistakes are my own; please reach out to me if you spot anything!

1. Condensation

Broadly speaking, condensed mathematics is about doing algebra on objects which carry a natural topology. For our seminar, this means coming up with a nice theory of continuous group cohomology $H^i_{cts}(G,C)$ as the derived functor of something, but there's a simpler example: the identity map of topological abelian groups:

(**R**, discrete topology) \rightarrow (**R**, Euclidean topology).

This map is not an isomorphism, but it has zero kernel and cokernel, which is sad. By replacing topological spaces with *condensed sets*, we can dispel this sadness.

This talk closely follows [BSSW24, 3.2-3.4], with many of the proofs referenced from [CS19]. In what follows, all set-theoretically issues will be (safely) ignored.

Definition 1.1. The *pro-étale site of a point* $*_{\text{pro-ét}}$ is the category of profinite sets, where the covers are jointly surjective continuous maps.

Recall that, unlike finite limits of sets, profinite limits inherit a natural topology, that being the subspace topology of the (compact) infinite product topology. That's why requiring *continuous* maps as covers makes sense. The actual *topology* of these sets is, depending on who you ask,

Date: February 19, 2024.

pathological. These are sometimes known as *Stone spaces*, and are equivalently compact totally disconnected Hausdorff spaces.

Definition 1.2. For \mathscr{C} a category of blah, the *category of condensed blah* is the category of \mathscr{C} -valued sheaves on $*_{\text{pro-\acute{e}t}}$: denote this by Cond(\mathscr{C}).

Example 1.1. There is a faithful functor from $Spc \rightarrow Cond(Set)$ given by sending

$$X \mapsto \underline{X} = C_{\rm cts}(-, X).$$

This is fully faithful when restricted to compactly generated topological spaces, and can be naturally upgraded to a functor from topological groups/rings/etc. to condensed groups/rings/etc.

Example 1.2. Let \mathbf{R}_{disc} denote \mathbf{R} with the discrete topology. Then the map $\underline{\mathbf{R}_{\text{disc}}} \rightarrow \underline{\mathbf{R}}$ of condensed abelian groups is injective, and has a cokernel Q, which is has underlying abelian group Q(*) = 0. However, for a general $S \in *_{\text{pro-\acute{e}t}}$, this is

$$Q(S) = \frac{\{\text{continuous maps } S \to \mathbf{R}\}}{\{\text{locally constant maps } S \to \mathbf{R}\}} \neq 0.$$

Just in case you were losing faith in the world for whatever reason, rest assured that the category of condensed abelian groups should fill you with hope:

Proposition 1.3. Cond(Ab) is a (co)complete closed symmetric monoidal abelian category. That *is/moreover*:

(a) We have an internal hom $\underline{\text{Hom}}(\mathcal{M}, \mathcal{N})$ and the adjunction

$$\operatorname{Hom}(\mathscr{M}\otimes\mathscr{N},\mathcal{P})\simeq\operatorname{Hom}(\mathscr{M},\operatorname{\underline{Hom}}(\mathscr{N},\mathcal{P})).$$

- (b) There is a "free condensed abelian group" functor from $Cond(Set) \rightarrow Cond(Ab)$ sending X to Z[X], which is left adjoint to the forgetful functor.
- (c) Cond(Ab) has enough projectives (being of the form $Z[S] = Z[\underline{S}]$ for S a small extremally disconnected set), we can form the derived (∞ -)category D(Cond(Ab)), with its usual derived tensor product and derived internal hom RHom.

Proof. See [CS19, 1.10] and [CS19, 2.2].

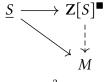
2. Solidification

When doing topology, we like to work with complete objects, like \mathbf{R} , \mathbf{Z}_p , or \mathbf{Q}_p , but these are usually not closed under tensor products (e.g. what's the topology on $\mathbf{Z}_p \otimes \mathbf{R}$?). In the condensed setting, this is known as being "solid."

Definition 2.1. Let $S = \lim S_i$ be a profinite set, with S_i finite. The *free solid abelian group on S* is

$$\mathbf{Z}[S]^{\bullet} = \varprojlim \mathbf{Z}[S_i],$$

where $Z[S_i]$ is the (discrete topological) free abelian group on S_i . A *solid abelian group* is a condensed abelian group M such that for all profinite S, the following diagram has a unique extension:



Proposition 2.2. The category Solid of condensed abelian groups is a (co)complete abelian subcategory of Cond(Ab). The induced functor $D(Solid) \rightarrow D(Cond(Ab))$ is fully faithful, and the following are equivalent:

- (a) $C \in D(Cond(Ab))$ lies in the essential image of D(Solid).
- (b) $H^i(C)$ is a solid abelian group for all $i \in \mathbb{Z}$.
- (c) For all profinite sets S, the natural map is an isomorphism:

 $\operatorname{RHom}(\mathbb{Z}[S]^{\bullet}, C) \to \operatorname{RHom}(\mathbb{Z}[S], C).$

Moreover, the inclusion Solid \hookrightarrow Cond(Ab) admits a left adjoint, "solidifcation" $M \mapsto M^{\blacksquare}$, which is the unique colimit-preserving extension of $\mathbb{Z}[S] \mapsto \mathbb{Z}[S]^{\blacksquare}$, and there is a unique symmetric monoidal tensor \otimes^{\blacksquare} for which solidifcation is symmetric monoidal.

Proof. See [CS19, 5.8,6.2].

Luckily, we see that being complete isn't far off from being solid:

Lemma 2.3. If M is a topological abelian group which is separated and complete for a linear topology, then <u>M</u> is solid.

Proof. By hypothesis, there is a cofiltered system of open subgroups $M_n \subset M$ inducing this topology, with $M \to \varprojlim M/M_n$ an isomorphism. Now, if $S = \varprojlim S_i$, with S_i finite, and $f: S \to M$ continuous, then for each n, the map $S \to M/M_n$ is locally constant, so it factors through $S_{i(n)} \to M/M_n$. Then, extend this to a map $\mathbb{Z}[S_i] \to M/M_n$, and take the limit in n, furnishing the desired map $\mathbb{Z}[S]^{\bullet} \to M$

3. Continuous Cohomology

According to a previous talk, the reason condensed mathematics shows up in this work on (ostensibly) K(n)-local homotopy theory is to give a good notion of continuous cohomology. Here we discuss this connection:

Definition 3.1. Let *G* be a condensed group, *M* a condensed abelian group. A *G*-action on *M* is a map $G \times M \rightarrow M$ satisfying the usual diagrams.

In this setting, we can upgrade Lemma 2.3:

Lemma 3.2. Let M be a topological abelian group, separated and complete for a linear topology, with a continuous action of a profinite group G. Then \underline{M} is a solid abelian group with \underline{G} -action.

Proof. We already know \underline{M} is solid, and we want to upgrade the *G*-module structure to an action $\underline{G} \times \underline{M} \to \underline{M}$. It thus suffices to produce a functorial action $C_{cts}(\neg, G) \curvearrowright C_{cts}(\neg, M/M_n)$. The idea is that because *G* acts continuously, there's an index *N* and open subgroup $H \subset G$ with $HM_N \subset M_n$, which lets us write down an explicit factorization. See [BSSW24, 3.3.1] for details. \Box

Let $Solid_G$ denote the (abelian) category of solid abelian groups admitting an action of <u>G</u>, for *G* profinite.

Theorem 3.3. Let G be a profinite group, and consider the fixed-points functor $Solid_G \rightarrow Solid$ defined as $M \mapsto M^G$ (the right adjoint to the trivial action functor). Let $R\Gamma(G, -)$ be its derived functor $D(Solid_G) \rightarrow D(Solid)$ and let $H^i(G, -) = R^i\Gamma(G, -)$.

(a) For any $C \in D($ **Solid**), $R\Gamma(G, C)$ is the totalization of the cosimplicial object

 $n \mapsto \operatorname{RHom}(\mathbb{Z}[G^n], C).$

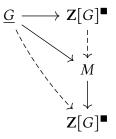
(b) If M satisfies the hypotheses of Lemma 3.2, then

$$H^{i}(G,\underline{M}) \simeq H^{i}_{\mathrm{cts}}(G,M).$$

Proof. See [BSSW24, 3.3.2]. The first point is that the "solid Iwasawa algebra"

$$\mathbf{Z}[G]^{\bullet} = \lim_{H \subset G \text{ open}} \underline{\mathbf{Z}[G/H]}$$

is projective in **Solid**_{*G*}. To see this, let $M \to \mathbb{Z}[G]^{\blacksquare}$ be a surjection from a solid <u>*G*</u>-module, and note that to construct a section, it suffices to construct a map $\underline{G} \to M$ such that $\underline{G} \to M \to \mathbb{Z}[G]^{\blacksquare}$ is the canonical map:



To do this, let $m \in M(*)$ lift the identity section $* \to \mathbb{Z}[G]^{\bullet}$, and use the map $g \mapsto gm$. Likewise, the algebras $\mathbb{Z}[G^n]^{\bullet}$ are projective.

Thus, we have the usual simplicial resolution of the trivial \underline{G} -module \underline{Z} in Solid_{*G*}:

$$\dots \rightrightarrows \mathbf{Z}[G^2]^{\blacksquare} \rightrightarrows \mathbf{Z}[G]^{\blacksquare} \to \underline{\mathbf{Z}}.$$

Now (a) is easy: if $C \in D(\operatorname{Solid}_G)$, then $R\Gamma(G, C)$ is the totalization of the cosimplicial object coming from applying $\underline{RHom}(\neg, C)$ to the above simplicial resolution. As *C* is solid, we know $\underline{RHom}(\mathbb{Z}[G^n]^{\bullet}, C) \simeq \underline{RHom}(\mathbb{Z}[G^n], C)$, whence the claim.

For (b), notice that for $C = \underline{M}$ and $\mathbf{Z}[G]$ being free, we have

$$\underline{\operatorname{RHom}}(\mathbf{Z}[G^n],\underline{M}) \simeq \underline{\operatorname{RHom}}(G^n,\underline{M}) \simeq C_{\operatorname{cts}}(G^n,M).$$

Thus, $R\Gamma(G, \underline{M})$ is the totalization of the *condensed* cosimplicial resolution which normally computes continuous cohomology; ergo, $H^i(G, \underline{M})$ is "condensed" $H^i_{cts}(G, M)$.

Definition 3.4. For *G* profinite, let $C \mapsto C^{hG} := R\Gamma(G, C)$ be the derived fixed points functor in Theorem 3.3. For *M* satisfying the conditions of Lemma 3.2, write M^{hG} for \underline{M}^{hG} .

Theorem 3.3 shows that for "nice" M, continuous cohomology $H^*_{cts}(G, M)$ is indeed the derived functor of G-fixed points in an abelian category. Moreover, we have an honest complex M^{hG} of solid abelian groups which computes continuous cohomology. This lets us use derived categories for future computations.

Remark 3.1. Here are two examples of the previous principle:

1. If $H \subset G$ is a closed normal subgroup, $M^{hH} \in D(\mathbf{Solid}_{G/H})$, so we have a quasi-isomorphism

$$M^{hG} \simeq \left(M^{hH}\right)^{hG/H}$$
.

This formally gives the Hochschild-Serre spectral sequence

$$H^{i}_{\mathrm{cts}}\left(G/H, H^{j}_{\mathrm{cts}}\left(H, M\right)\right) \Longrightarrow H^{i+1}_{\mathrm{cts}}(G, M).$$

2. For $M, N \in D(\mathbf{Solid}_G)$, with G acting trivially on M, there is a *projection formula*: i.e. a canonical isomorphism in $D(\mathbf{Solid})$

$$M \otimes^{\blacksquare} N^{hG} \xrightarrow{\simeq} (M \otimes^{\blacksquare} N)^{hG}.$$

4. *p*-Adic Completion

To end, let's recall the notion of derived *p*-completeness in the context of D(Ab).

Definition 4.1. An object $A \in D(Ab)$ is *(derived) p*-complete if RHom(B, A) $\simeq 0$ for all $B \in D(Ab)$ with $B \otimes \mathbb{Z}/p \simeq 0$. $D(Ab)_p$ is the full subcategory of D(Ab) of *p*-complete objects.

For those familiar, $D(\mathbf{Ab})_p$ is the Bousfield localization of $D(\mathbf{Ab})$ at the object \mathbf{Z}/p ; it suffices to check that $\operatorname{RHom}(\mathbf{Z}[p^{-1}], A) = 0$. Thus, there is a left adjoint $A \mapsto \widehat{A}$ to the inclusion $D(\mathbf{Ab})_p \subset D(\mathbf{Ab})$, given by

$$\widehat{A} = \lim_{\longrightarrow} \operatorname{cof}(A \xrightarrow{p^n} A),$$

and a unique symmetric monoidal tensor $\widehat{\otimes}$ making $A\mapsto \widehat{A}$ symmetric monoidal.

Definition 4.2. An object $A \in D(\text{Cond}(Ab))$ is *p*-complete, and is in the full subcategory $D(\text{Cond}(Ab))_p$, if for all $B \in D(\text{Cond}(Ab))$ with $B \otimes \mathbb{Z}/p \simeq 0$, we have $\underline{\text{RHom}}(B, A) = 0$.

Lemma 4.3. Consider $D(Cond(Ab))_p$: p-complete complexes of condensed abelian groups:

- (a) $D(Cond(Ab))_p$ is closed under limits.
- (b) For $A \in D(\text{Cond}(Ab))_p$, if $A/p \simeq 0$, then $A \simeq 0$.
- (c) The inclusion $D(Cond(Ab))_p \subset D(Cond(Ab))$ admits a left adjoint

$$A \mapsto A_p^{\wedge} = \varprojlim A/p^n.$$

Proof. See [BSSW24, 3.4.4].

We'd also like to know which objects in D(Cond(Ab)) "come from" D(Ab).

Definition 4.4. Let Γ_* : Cond(Ab) \rightarrow Ab be the underlying abelian group functor $\Gamma_*A = A(*)$. This is right adjoint to $\Gamma^*: A \mapsto \underline{A}$. Both are exact, and are identified with their derived functors. The *discretization* of $A \in D($ Cond(Ab)) is

$$A^{\delta} \coloneqq \Gamma^* \Gamma_* A = A(*).$$

A is *discrete* if the counit $A^{\delta} \rightarrow A$ is an isomorphism.

Lemma 4.5.

- (a) Discretization is t-exact, i.e. if $A \in D(Cond(Ab))^{\heartsuit}$, then $A^{\delta} \in D(Cond(Ab))^{\heartsuit}$.
- (b) Discrete objects are closed under fibers, cofibers, and retracts.
- (c) The image of $\Gamma^*: D(Ab) \to D(Cond(Ab))$ consists of discrete objects.

Proof. (a) Γ^* is given by pulling back sheaves, and Γ_* is corepresented by \underline{Z} , which is a projective condensed abelian group, so both are *t*-exact. (b) follows from this.

(c) is equivalent to Γ^* being fully faithful, which is equivalent to the unit id $\rightarrow \Gamma_*\Gamma^*$ being an equivalence, which is always true.

Definition 4.6. An object $A \in D(Cond(Ab))$ is *p*-adic if it is *p*-complete and $A \otimes \mathbb{Z}/p$ is discrete.

Proposition 4.7. Consider the condensed *p*-adic completion for $A \in D(Ab)$: $A \mapsto (\Gamma^*A)_p^{\wedge}$. This factors through a (symmetric monoidal) equivalence of $D(Ab)_p$, $\widehat{\otimes}$ and the *p*-adic objects of $D(Cond(Ab))_p$, \otimes^{\blacksquare} .

Proof. First, this functor factors through $A \mapsto \underline{A}_p^{\wedge}$, as

$$(\Gamma^*A_p^{\wedge})_p^{\wedge} = \varprojlim \underline{A}^{\wedge}/p/p^n \simeq \varprojlim A/p^n \simeq (\Gamma^*A)_p^{\wedge}.$$

To see that $(\Gamma^*)_p^{\wedge}$ is *p*-adic. It is *p*-complete as

$$\underline{\operatorname{Hom}}(\underline{\mathbf{Z}[1/p]},(\Gamma^*A)_p^{\wedge}) = \varprojlim \underline{\operatorname{Hom}}(\underline{\mathbf{Z}[1/p]},\Gamma^*(A)/p^n) \simeq 0$$

and $(\Gamma^*A)_p^{\wedge}/p \simeq \Gamma^*(A/p)$ is discrete. The quasi-inverse functor is Γ_* , on *p*-adic objects.

Finally, $(\Gamma^*A)_p^{\wedge}$ is solid as a limit of (solid) discrete objects, and the same trick shows that this functor is symmetric monoidal.

Overall, we see that if *A* is a derived *p*-complete abelian group with a continuous action of a profinite group *G*, then Theorem 3.3 shows that the continuous cohomology $H^i_{cts}(G, A)$ is the cohomology of the continuous fixed points $((\Gamma^*A)_p^{\wedge})^{hG}$, and similarly for complexes fo derived *p*-complete continuous *G*-modules. This will be useful later.

Acknowledgments

Many thanks to the organizers for providing me with helpful resources, and the attendees of Babytop for clarifying everything through the course of discussion.

References

- [BSSW24] Tobias Barthel, Tomer M. Schlank, Nathaniel Stapleton, and Jared Weinstein, On the rationalization of the k(n)-local sphere, 2024.
- [CS19] Dustin Clausen and Peter Scholze, *Lectures on condensed mathematics*, May 2019.
- [Sta22] The Stacks project authors, *The stacks project*, https://stacks.math.columbia.edu, 2022. *Email address*: rushil_mallarapu@college.harvard.edu