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Condensed mathematics is a formalism for constructing abelian categories of “topological” ob-
jects, and shows up in the computation of [BSSW24] as ameans of accessing continuous cohomol-
ogy. In this talk, we will provide an overview of the information from condensed math necessary
for the rest of the seminar, covering condensed sets/abelian groups, solidity and its connection
to continuous cohomology, and 𝑝-complete and 𝑝-adic complexes of condensed abelian groups.
These are notes from a talk I gave for Babytop, organized by Ishan Levy, Piotr Pstragowski,

and Andy Senger. All mistakes are my own; please reach out to me if you spot anything!

1. Condensation

Broadly speaking, condensed mathematics is about doing algebra on objects which carry a
natural topology. For our seminar, this means coming up with a nice theory of continuous group
cohomology 𝐻 𝑖

cts(𝐺,𝐶) as the derived functor of something, but there’s a simpler example: the
identity map of topological abelian groups:

(R, discrete topology) Ð→ (R,Euclidean topology).

This map is not an isomorphism, but it has zero kernel and cokernel, which is sad. By replacing
topological spaces with condensed sets, we can dispel this sadness.

This talk closely follows [BSSW24, 3.2-3.4], with many of the proofs referenced from [CS19].
In what follows, all set-theoretically issues will be (safely) ignored.

Definition 1.1. The pro-étale site of a point ∗pro−ét is the category of profinite sets, where the
covers are jointly surjective continuous maps.

Recall that, unlike finite limits of sets, profinite limits inherit a natural topology, that being the
subspace topology of the (compact) infinite product topology. That’s why requiring continuous
maps as covers makes sense. The actual topology of these sets is, depending on who you ask,
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pathological. These are sometimes known as Stone spaces, and are equivalently compact totally
disconnected Hausdorff spaces.
Definition 1.2. For 𝒞 a category of blah, the category of condensed blah is the category of 𝒞-
valued sheaves on ∗pro−ét: denote this by Cond(𝒞).
Example 1.1. There is a faithful functor from SpcÐ→ Cond(Set) given by sending

𝑋 ↦ 𝑋 =𝐶cts(−,𝑋).

This is fully faithful when restricted to compactly generated topological spaces, and can be nat-
urally upgraded to a functor from topological groups/rings/etc. to condensed groups/rings/etc.
Example 1.2. LetRdisc denoteRwith the discrete topology. Then themapRdisc Ð→ R of condensed
abelian groups is injective, and has a cokernel𝑄 , which is has underlying abelian group𝑄(∗) = 0.
However, for a general 𝑆 ∈ ∗pro−ét, this is

𝑄(𝑆) = {continuous maps 𝑆 Ð→ R}
{locally constant maps 𝑆 Ð→ R}

≠ 0.

Just in case you were losing faith in the world for whatever reason, rest assured that the cate-
gory of condensed abelian groups should fill you with hope:
Proposition 1.3. Cond(Ab) is a (co)complete closed symmetric monoidal abelian category. That
is/moreover:

(a) We have an internal hom Hom(ℳ,𝒩) and the adjunction

Hom(ℳ ⊗𝒩,P) ≃ Hom(ℳ,Hom(𝒩,P)).

(b) There is a “free condensed abelian group” functor from Cond(Set) Ð→ Cond(Ab) sending 𝑋
to Z[𝑋 ], which is left adjoint to the forgetful functor.

(c) Cond(Ab) has enough projectives (being of the form Z[𝑆] = Z[𝑆] for 𝑆 a small extremally
disconnected set), we can form the derived (∞-)category 𝐷(Cond(Ab)), with its usual de-
rived tensor product and derived internal hom RHom.

Proof. See [CS19, 1.10] and [CS19, 2.2]. □

2. Solidification

When doing topology, we like to work with complete objects, like R, Z𝑝 , or Q𝑝 , but these are
usually not closed under tensor products (e.g. what’s the topology on Z𝑝 ⊗R?). In the condensed
setting, this is known as being “solid.”
Definition 2.1. Let 𝑆 = lim←Ð𝑆𝑖 be a profinite set, with 𝑆𝑖 finite. The free solid abelian group on 𝑆 is

Z[𝑆]∎ = lim←ÐZ[𝑆𝑖],

where Z[𝑆𝑖] is the (discrete topological) free abelian group on 𝑆𝑖 . A solid abelian group is a con-
densed abelian group𝑀 such that for all profinite 𝑆 , the following diagramhas a unique extension:

𝑆 Z[𝑆]∎

𝑀
2



Proposition 2.2. The category Solid of condensed abelian groups is a (co)complete abelian sub-
category of Cond(Ab). The induced functor 𝐷(Solid) Ð→ 𝐷(Cond(Ab)) is fully faithful, and the
following are equivalent:

(a) 𝐶 ∈ 𝐷(Cond(Ab)) lies in the essential image of 𝐷(Solid).

(b) 𝐻 𝑖(𝐶) is a solid abelian group for all 𝑖 ∈ Z.

(c) For all profinite sets 𝑆 , the natural map is an isomorphism:

RHom(Z[𝑆]∎,𝐶) Ð→ RHom(Z[𝑆],𝐶).

Moreover, the inclusion Solid ↪ Cond(Ab) admits a left adjoint, “solidifcation” 𝑀 ↦ 𝑀∎, which is
the unique colimit-preserving extension of Z[𝑆] ↦ Z[𝑆]∎, and there is a unique symmetric monoidal
tensor ⊗∎ for which solidifcation is symmetric monoidal.

Proof. See [CS19, 5.8,6.2]. □

Luckily, we see that being complete isn’t far off from being solid:

Lemma 2.3. If𝑀 is a topological abelian group which is separated and complete for a linear topol-
ogy, then𝑀 is solid.

Proof. By hypothesis, there is a cofiltered system of open subgroups𝑀𝑛 ⊂𝑀 inducing this topol-
ogy, with𝑀 Ð→ lim←Ð𝑀/𝑀𝑛 an isomorphism. Now, if 𝑆 = lim←Ð𝑆𝑖 , with 𝑆𝑖 finite, and 𝑓 ∶𝑆 Ð→𝑀 contin-
uous, then for each 𝑛, the map 𝑆 Ð→𝑀/𝑀𝑛 is locally constant, so it factors through 𝑆𝑖(𝑛) Ð→𝑀/𝑀𝑛 .
Then, extend this to a map Z[𝑆𝑖] Ð→ 𝑀/𝑀𝑛 , and take the limit in 𝑛, furnishing the desired map
Z[𝑆]∎ Ð→𝑀 □

3. Continuous Cohomology

According to a previous talk, the reason condensed mathematics shows up in this work on
(ostensibly) 𝐾(𝑛)-local homotopy theory is to give a good notion of continuous cohomology.
Here we discuss this connection:

Definition 3.1. Let 𝐺 be a condensed group, 𝑀 a condensed abelian group. A 𝐺-action on 𝑀 is
a map 𝐺 ×𝑀 Ð→𝑀 satisfying the usual diagrams.

In this setting, we can upgrade Lemma 2.3:

Lemma 3.2. Let 𝑀 be a topological abelian group, separated and complete for a linear topology,
with a continuous action of a profinite group 𝐺 . Then𝑀 is a solid abelian group with 𝐺-action.

Proof. We already know𝑀 is solid, and we want to upgrade the𝐺-module structure to an action
𝐺×𝑀 Ð→𝑀 . It thus suffices to produce a functorial action𝐶cts(−,𝐺) ↷𝐶cts(−,𝑀/𝑀𝑛). The idea is
that because𝐺 acts continuously, there’s an index 𝑁 and open subgroup 𝐻 ⊂𝐺 with 𝐻𝑀𝑁 ⊂𝑀𝑛 ,
which lets us write down an explicit factorization. See [BSSW24, 3.3.1] for details. □

Let Solid𝐺 denote the (abelian) category of solid abelian groups admitting an action of 𝐺 , for
𝐺 profinite.
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Theorem 3.3. Let 𝐺 be a profinite group, and consider the fixed-points functor Solid𝐺 Ð→ Solid
defined as 𝑀 ↦ 𝑀𝐺 (the right adjoint to the trivial action functor). Let 𝑅Γ(𝐺,−) be its derived
functor 𝐷(Solid𝐺) Ð→ 𝐷(Solid) and let 𝐻 𝑖(𝐺,−) = 𝑅𝑖Γ(𝐺,−).

(a) For any 𝐶 ∈ 𝐷(Solid), 𝑅Γ(𝐺,𝐶) is the totalization of the cosimplicial object

𝑛 ↦ RHom(Z[𝐺𝑛],𝐶).

(b) If𝑀 satisfies the hypotheses of Lemma 3.2, then

𝐻 𝑖(𝐺,𝑀) ≃ 𝐻 𝑖
cts(𝐺,𝑀).

Proof. See [BSSW24, 3.3.2]. The first point is that the “solid Iwasawa algebra”

Z[𝐺]∎ = lim←Ð
𝐻⊂𝐺 open

Z[𝐺/𝐻]

is projective in Solid𝐺 . To see this, let 𝑀 Ð→ Z[𝐺]∎ be a surjection from a solid 𝐺-module, and
note that to construct a section, it suffices to construct a map𝐺 Ð→𝑀 such that𝐺 Ð→𝑀 Ð→ Z[𝐺]∎
is the canonical map:

𝐺 Z[𝐺]∎

𝑀

Z[𝐺]∎

To do this, let𝑚 ∈ 𝑀(∗) lift the identity section ∗ Ð→ Z[𝐺]∎, and use the map 𝑔 ↦ 𝑔𝑚. Likewise,
the algebras Z[𝐺𝑛]∎ are projective.

Thus, we have the usual simplicial resolution of the trivial 𝐺-module 𝑍 in Solid𝐺 :

. . . →→→ Z[𝐺2]∎ ⇉ Z[𝐺]∎ Ð→ Z.

Now (a) is easy: if 𝐶 ∈ 𝐷(Solid𝐺), then 𝑅Γ(𝐺,𝐶) is the totalization of the cosimplicial object
coming from applying RHom(−,𝐶) to the above simplicial resolution. As 𝐶 is solid, we know
RHom(Z[𝐺𝑛]∎,𝐶) ≃ RHom(Z[𝐺𝑛],𝐶), whence the claim.

For (b), notice that for 𝐶 =𝑀 and Z[𝐺] being free, we have

RHom(Z[𝐺𝑛],𝑀) ≃ RHom(𝐺𝑛,𝑀) ≃𝐶cts(𝐺𝑛,𝑀).

Thus, 𝑅Γ(𝐺,𝑀) is the totalization of the condensed cosimplicial resolution which normally com-
putes continuous cohomology; ergo, 𝐻 𝑖(𝐺,𝑀) is “condensed” 𝐻 𝑖

cts(𝐺,𝑀). □

Definition 3.4. For 𝐺 profinite, let 𝐶 ↦ 𝐶ℎ𝐺 B 𝑅Γ(𝐺,𝐶) be the derived fixed points functor in
Theorem 3.3. For𝑀 satisfying the conditions of Lemma 3.2, write𝑀ℎ𝐺 for𝑀ℎ𝐺 .
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Theorem 3.3 shows that for “nice”𝑀 , continuous cohomology𝐻∗cts(𝐺,𝑀) is indeed the derived
functor of 𝐺-fixed points in an abelian category. Moreover, we have an honest complex 𝑀ℎ𝐺 of
solid abelian groups which computes continuous cohomology. This lets us use derived categories
for future computations.

Remark 3.1. Here are two examples of the previous principle:

1. If𝐻 ⊂𝐺 is a closed normal subgroup,𝑀ℎ𝐻 ∈ 𝐷(Solid𝐺/𝐻), sowe have a quasi-isomorphism

𝑀ℎ𝐺 ≃ (𝑀ℎ𝐻)ℎ𝐺/𝐻 .

This formally gives the Hochschild-Serre spectral sequence

𝐻 𝑖
cts (𝐺/𝐻,𝐻

𝑗
cts (𝐻,𝑀)) Ô⇒ 𝐻 𝑖+1

cts (𝐺,𝑀).

2. For 𝑀,𝑁 ∈ 𝐷(Solid𝐺), with 𝐺 acting trivially on 𝑀 , there is a projection formula: i.e. a
canonical isomorphism in 𝐷(Solid)

𝑀 ⊗∎ 𝑁ℎ𝐺 ≃Ð→ (𝑀 ⊗∎ 𝑁 )ℎ𝐺 .

4. 𝑝-Adic Completion

To end, let’s recall the notion of derived 𝑝-completeness in the context of 𝐷(Ab).

Definition 4.1. An object𝐴 ∈ 𝐷(Ab) is (derived) 𝑝-complete if RHom(𝐵,𝐴) ≃ 0 for all 𝐵 ∈ 𝐷(Ab)
with 𝐵 ⊗ Z/𝑝 ≃ 0. 𝐷(Ab)𝑝 is the full subcategory of 𝐷(Ab) of 𝑝-complete objects.

For those familiar, 𝐷(Ab)𝑝 is the Bousfield localization of 𝐷(Ab) at the object Z/𝑝; it suffices
to check that RHom(Z[𝑝−1],𝐴) = 0. Thus, there is a left adjoint𝐴 ↦ 𝐴 to the inclusion 𝐷(Ab)𝑝 ⊂
𝐷(Ab), given by

𝐴 = lim←Ð cof(𝐴
𝑝𝑛

Ð→ 𝐴),

and a unique symmetric monoidal tensor ⊗̂ making 𝐴 ↦ 𝐴 symmetric monoidal.

Definition 4.2. Anobject𝐴 ∈ 𝐷(Cond(Ab)) is 𝑝-complete, and is in the full subcategory𝐷(Cond(Ab))𝑝 ,
if for all 𝐵 ∈ 𝐷(Cond(Ab)) with 𝐵 ⊗ Z/𝑝 ≃ 0, we have RHom(𝐵,𝐴) = 0.

Lemma 4.3. Consider 𝐷(Cond(Ab))𝑝 : 𝑝-complete complexes of condensed abelian groups:

(a) 𝐷(Cond(Ab))𝑝 is closed under limits.

(b) For 𝐴 ∈ 𝐷(Cond(Ab))𝑝 , if 𝐴/𝑝 ≃ 0, then 𝐴 ≃ 0.

(c) The inclusion 𝐷(Cond(Ab))𝑝 ⊂ 𝐷(Cond(Ab)) admits a left adjoint

𝐴 ↦ 𝐴∧𝑝 = lim←Ð𝐴/𝑝
𝑛 .

Proof. See [BSSW24, 3.4.4]. □

We’d also like to know which objects in 𝐷(Cond(Ab)) “come from” 𝐷(Ab).
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Definition 4.4. Let Γ∗∶Cond(Ab) Ð→ Ab be the underlying abelian group functor Γ∗𝐴 = 𝐴(∗).
This is right adjoint to Γ∗∶𝐴 ↦ 𝐴. Both are exact, and are identified with their derived functors.
The discretization of 𝐴 ∈ 𝐷(Cond(Ab)) is

𝐴𝛿 B Γ∗Γ∗𝐴 = 𝐴(∗).

𝐴 is discrete if the counit 𝐴𝛿 Ð→ 𝐴 is an isomorphism.
Lemma 4.5.

(a) Discretization is 𝑡-exact, i.e. if 𝐴 ∈ 𝐷(Cond(Ab))♡, then 𝐴𝛿 ∈ 𝐷(Cond(Ab))♡.

(b) Discrete objects are closed under fibers, cofibers, and retracts.

(c) The image of Γ∗∶𝐷(Ab) Ð→ 𝐷(Cond(Ab)) consists of discrete objects.
Proof. (a) Γ∗ is given by pulling back sheaves, and Γ∗ is corepresented by 𝑍 , which is a projective
condensed abelian group, so both are 𝑡-exact. (b) follows from this.

(c) is equivalent to Γ∗ being fully faithful, which is equivalent to the unit id Ð→ Γ∗Γ∗ being an
equivalence, which is always true. □

Definition 4.6. An object 𝐴 ∈ 𝐷(Cond(Ab)) is 𝑝-adic if it is 𝑝-complete and 𝐴⊗Z/𝑝 is discrete.
Proposition 4.7. Consider the condensed 𝑝-adic completion for𝐴 ∈ 𝐷(Ab): 𝐴 ↦ (Γ∗𝐴)∧𝑝 . This fac-
tors through a (symmetricmonoidal) equivalence of𝐷(Ab)𝑝, ⊗̂ and the𝑝-adic objects of𝐷(Cond(Ab))𝑝,⊗∎.

Proof. First, this functor factors through 𝐴 ↦ 𝐴∧𝑝 , as

(Γ∗𝐴∧𝑝 )∧𝑝 = lim←Ð𝐴
∧/𝑝/𝑝𝑛 ≃ lim←Ð𝐴/𝑝

𝑛 ≃ (Γ∗𝐴)∧𝑝 .

To see that (Γ∗)∧𝑝 is 𝑝-adic. It is 𝑝-complete as

Hom(Z[1/𝑝], (Γ∗𝐴)∧𝑝 ) = lim←ÐHom (Z[1/𝑝], Γ∗(𝐴)/𝑝𝑛) ≃ 0

and (Γ∗𝐴)∧𝑝 /𝑝 ≃ Γ∗(𝐴/𝑝) is discrete. The quasi-inverse functor is Γ∗, on 𝑝-adic objects.
Finally, (Γ∗𝐴)∧𝑝 is solid as a limit of (solid) discrete objects, and the same trick shows that this

functor is symmetric monoidal. □

Overall, we see that if 𝐴 is a derived 𝑝-complete abelian group with a continuous action of
a profinite group 𝐺 , then Theorem 3.3 shows that the continuous cohomology 𝐻 𝑖

cts(𝐺,𝐴) is the
cohomology of the continuous fixed points ((Γ∗𝐴)∧𝑝 )

ℎ𝐺 , and similarly for complexes fo derived
𝑝-complete continuous 𝐺-modules. This will be useful later.
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