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The theory of abelian varieties is a natural source for many 𝑝-divisible groups, giving
an algebro-geometric inroad to TAF. The goal of this talk is to briskly introduce the main
concepts in this theory and then discuss the Serre-Tate theorem, which states that the
deformation theory of abelian varieties are controlled by the deformation theory of their
associated 𝑝-divisible group. We will first define abelian varieties and isogenies, discuss
the construction of the dual of an abelian variety, introduce some aspects of the theory of
𝑝-divisible groups, and end with an overview of the proof of the Serre-Tate theorem.
These are notes from a talk I gave for Babytop, organized by Ishan Levy and Andy

Senger. All mistakes are my own; please reach out to me if you spot anything!

1. Abelian Varieties and Isogenies
Let 𝑘 be a field; we’ll largely work in Sch/𝑘 . Recall that a 𝑘-variety is a geometrically

integral, separated, finite-type𝑘-scheme. I learned this material from [Mum08] or [Cai04].
Basic definitions.

Definition 1.1. A 𝑘-group scheme is a group object 𝐺 in 𝑘-schemes; i.e. a 𝑘-scheme
equipped with maps 𝑚∶𝐺 × 𝐺 Ð→ 𝐺 , 𝑖 ∶𝐺 Ð→ 𝐺 , 𝑒 ∶Spec𝑘 Ð→ 𝐺 making the expected di-
agrams commute. A 𝑘-group scheme which is a variety is a group variety. An abelian
variety is a proper (smooth) group variety.

In general, we can generalize this to an abelian scheme𝐴 over a base 𝑆 , which is a smooth
proper group scheme with geometrically connected fibers; i.e. the fibers are abelian vari-
eties of constant dimension. In fact, the smoothness condition is unnecessary over a field;
in fact, if 𝑋 is a geometrically reduced lft 𝑘-group scheme, it is automatically 𝑘-smooth,
because of generic smoothness and stability of (𝑋

𝑘
)sm under 𝑋(𝑘)-translations.
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In the case of abelian varieties, the idea is that geometry greatly regulates the group
theory of these objects. The main workhorse is the following rigidity lemma:

Lemma 1.2. Let 𝑋 be a complete variety (i.e. proper over 𝑘), and 𝑌,𝑍 𝑘-varieties. If 𝑓 ∶𝑋 ×
𝑌 Ð→ 𝑍 is a morphism such that 𝑓 (𝑋 × {𝑦}) = {𝑧} for some 𝑦 ∈ 𝑌(𝑘) and 𝑧 ∈ 𝑍(𝑘), then 𝑓
uniquely factors through 𝜋𝑌 ∶𝑋 ×𝑌 Ð→ 𝑌 .

Proof. See [Cai04, 1.6]. □

As a consequence, we have the following corollaries, justifying the terminology “abelian”:

Corollary 1.3. Every morphism 𝑓 ∶𝑋 Ð→ 𝑌 of abelian varieties over 𝑘 factors as the compo-
sition of a homomorphism and a translation, 𝑡𝑥 ∶𝑋 Ð→ 𝑋 given by 𝑡𝑥(𝑦) =𝑚(𝑦,𝑥).

Proof. Define ℎ = 𝑡𝑖(𝑓 (𝑒𝑋 )) ○ 𝑓 , so 𝑓 = 𝑡 𝑓 (𝑒𝑋 ) ○ℎ and ℎ(𝑒𝑋) = 𝑒𝑌 . We claim ℎ is a homomor-
phism, i.e. the following diagram commutes:

𝑋 ×𝑋 𝑌 ×𝑌

𝑋 𝑌
ℎ

𝑚𝑌𝑚𝑋

ℎ×ℎ

Denote the top composite by 𝜑 and the bottom composite by𝜓 . Observe that the map

𝜉 ∶𝑋 ×𝑋
𝜑×𝑖𝑌 ○𝜓ÐÐÐÐ→ 𝑌 ×𝑌 𝑚𝑌Ð→ 𝑌

has
𝜉(𝑋 × {𝑒𝑋}) = 𝜉({𝑒𝑋} ×𝑋) = {𝑒𝑌} ,

so by the rigidity lemma, 𝜉 is the constant map with image 𝑒𝑌 , i.e. 𝜑 =𝜓 . □

Corollary 1.4. The group structure on an abelian variety 𝑋 is commutative.

Proof. Consider the inversion morphism 𝑖 ∶𝑋 Ð→ 𝑋 . By the previous corollary, it factors as
𝑡𝑖(𝑒𝑋 ) ○ ℎ = 𝑡𝑒𝑋 ○ ℎ = ℎ for a homomorphism ℎ, so 𝑖 is itself a homomorphism. Thus, the
group structure must be commutative. □

Another strength of this theory is the concreteness with which we can deal with line
bundles (i.e. invertible sheaves). In general, these results are often stated as the “theorem
of the square” and the “theorem of the cube,” but I’ll just cite a version of these results:

Theorem 1.5. Let 𝑋 /𝑘 be an abelian variety and 𝑌 ∈ Sch/𝑘 . If 𝑓 ,𝑔,ℎ∶𝑌 Ð→ 𝑋 are 𝑘-
morphisms andℒ is an invertible sheaf on 𝑋 , then

(𝑓 +𝑔 +ℎ)∗ℒ ⊗ (𝑓 +𝑔)∗ℒ−1 ⊗ (𝑓 +ℎ)∗ℒ−1 ⊗ (𝑔 +ℎ)∗ℒ−1 ⊗ 𝑓 ∗ℒ ⊗𝑔∗ℒ ⊗ℎ∗ℒ

is trivial on 𝑌 .
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Proof. See [Cai04, 1.14]. □

Definition 1.6. Let 𝑋 be a commutative 𝑘-group scheme, 𝑛 ∈ Z. Let[𝑛]𝑋 ∶𝑋 Ð→ 𝑋 be the
homomorphism corresponding (via Yoneda) to ×𝑛 on 𝑋(𝑇 ), for all 𝑇 ∈ Sch/𝑘 .
Corollary 1.7. Let 𝑋 be an abelian variety, ℒ a line bundle on 𝑋 . Then, for all 𝑛 ∈ Z,

𝑛∗ℒ ≃ℒ⊗
𝑛
2+𝑛
2 ⊗ (−1)∗ℒ⊗

𝑛
2−𝑛
2 .

Proof. Consider 𝑓 = 𝑛, 𝑔 = 1 = id, ℎ = −1 = 𝑖 . Then, the theorem above implies
(𝑛 + 1)∗ℒ ≃ 𝑛∗ℒ⊗2 ⊗ (𝑛 − 1)∗ℒ−1 ⊗ℒ ⊗ (−1)∗ℒ,

as [0]∗𝑋ℒ = 𝒪𝑋 and 1∗ℒ =ℒ. Thus,

(𝑛 + 1)∗ℒ =ℒ𝑛
2
+𝑛 ⊗ (−1)∗ℒ𝑛

2
−𝑛 ⊗ℒ

𝑛−𝑛22
⊗ (−1)∗ℒ

−𝑛2+3𝑛−2
2 ⊗ℒ ⊗ (−1)∗ℒ

=ℒ
2𝑛2+2𝑛−𝑛2+𝑛+2

2 ⊗ (−1)∗ℒ
2𝑛2−2𝑛−𝑛2+3𝑛−2+2

2

=ℒ
(𝑛+1)(𝑛+2)

2 ⊗ (−1)∗ℒ
𝑛(𝑛+1)

2 ,

so the theorem follows from induction on 𝑛, starting from the trivial cases 𝑛 = 0, 1,−1. □

In fact, it turns out that every abelian variety 𝑋 /𝑘 is projective, or equivalently, admits
an ample line bundle. We’ll return to these ideas when we discuss polarizations.
Isogenies.

Definition 1.8. An isogeny 𝑓 ∶𝑋 Ð→ 𝑌 of abelian varieties is a homomorphism satisfying
one of the following equivalent conditions:

(a) 𝑓 is surjective and dim𝑋 = dim𝑌 .

(b) ker 𝑓 is a finite group scheme and dim𝑋 = dim𝑌 .

(c) 𝑓 is finite, flat, and surjective, so 𝑓∗𝒪𝑋 is a locally free 𝒪𝑌 -module of finite rank).
The degree of 𝑓 is the degree of the field extension [𝑘(𝑋)∶𝑘(𝑌)].
Proposition 1.9. Let 𝑋 be an abelian variety, 𝑛 ≠ 0. Then, [𝑛]𝑋 is an isogeny of degree
𝑛2 dim𝑋 . Moreover, for char(𝑘) ∤ 𝑛, 𝑋 [𝑛] = ker[𝑛]𝑋 is an étale group scheme of rank 𝑛2 dim𝑋 ,
and 𝑋 [𝑛](𝑘sep) ≃ (Z/𝑛)2 dim𝑋 .

Proof. Let ℒ be an ample line bundle on 𝑋 (which exists because 𝑋 is projective). Now,
because [−1]𝑋 is an automorphism of 𝑋 , (−1)∗ℒ is ample, so for 𝑛 ≠ 0, 𝑛∗ℒ is ample.
Thus, ℒ restricted to 𝑋 [𝑛] is ample and trivial, implying that dim𝑋 [𝑛] = 0. To find its
degree, observe that if ℒ is a symmetric line bundle (i.e. ℒ = (−1)∗ℒ), which always
exists by symmetrizing an ample line bundle, we have

(deg𝑛)(degℒ) = deg(𝑛∗ℒ) = deg (ℒ𝑛
2
) = 𝑛2 degℒ,

whence the claim. The claim about [𝑛] being finite étale follows from computing that it
induces multiplication by 𝑛 on 𝑇0𝑋 , which is an isomorphism for char(𝑘) ∤ 𝑛. □
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2. The Dual of an Abelian Variety
Let 𝐴/𝑘 be an abelian variety. We want to construct a dual variety 𝐴𝑡 , which should

represent the functor of “degree 0 line bundles.” Apparently, although I’m uninformed on
this point, this generalizes theWeil pairing for elliptic curves, but our primary motivation
is that a polarization, which “ties together” 𝐴 and 𝐴𝑡 , is necessary to simplify the moduli
of certain kinds of abelian varieties; this will probably be covered in next week’s talk. I’ll
point out [Cai04, §3] as a reference I really like and [Mum08, §13] has a lot of details, but
much of what’s below comes from [BL07, §4].
The Picard scheme and Dual Variety. Recall that if 𝑋 is a scheme, the Picard group
Pic(𝑋) is the group of isomorphism classes of line bundles under tensor product, made
into a contravariant functor via pullback. If 𝑋 is an 𝑆-scheme, we might try and define
a functor Pic(𝑋 ×𝑆 −) on 𝑆-schemes parametrizing line bundles relatively; however, this
functor isn’t even a Zariski sheaf. Thus, we’ll need to be a bit more clever:
Let 𝐴/𝑘 be an abelian variety, and for any 𝑘-scheme 𝑇 , let 𝐴𝑇 = 𝐴 ×𝑇 , which admits a

map 𝜖𝑇 ∶𝑇 Ð→ 𝐴𝑇 coming from the identity section of 𝐴.
Definition 2.1. A rigidified sheaf on 𝐴𝑇 is a pair (ℒ, 𝛼) of a line bundle on 𝐴𝑇 and a
trivialization 𝛼 ∶𝒪𝑇 Ð→ 𝜖∗𝑇ℒ. Then, define the functor 𝑃𝐴/𝑘 ∶ (Sch/𝑘)op Ð→ Set via

𝑃𝐴/𝑘(𝑇 ) = {isomorphism classes of rigidified sheaves (ℒ, 𝛼) on 𝐴𝑇} ,
where 𝑇 ′ Ð→𝑇 induces 𝑃𝐴/𝑘(𝑇 ) Ð→ 𝑃𝐴/𝑘(𝑇 ′) via pullback.
Note that a rigidified sheaf has no nontrivial automorphisms, as if ℎ∶ℒ Ð→ ℒ is an

automorphism, it is an element of Γ(𝐴𝑇 ,𝒪𝐴𝑇 ) = Γ(𝑇,𝒪𝑇 )with 𝑒∗ℎ = 1, soℎ = id. Moreover,
there is an obvious group structure of 𝑃𝐴/𝑘(𝑇 ) under tensor product of line bundles and
their rigidifications. Thus, we expect the following:
Theorem 2.2. The functor 𝑃𝐴/𝑘 is represented by a group scheme Pic𝐴/𝑘 , with a universal
rigidified sheaf (P, 𝜈) on 𝐴 × Pic𝐴/𝑘 ; for any (ℒ, 𝛼) on 𝐴𝑇 , there exists 𝑔∶𝑇 Ð→ Pic𝐴/𝑘 with
(id×𝑔)∗(P, 𝜈) ≃ (ℒ, 𝛼).
Definition 2.3. The dual abelian variety of𝐴 is the connected component of the identity,
𝐴𝑡 B Pic0

𝐴/𝑘
. The restriction of (P, 𝜈) to 𝐴𝑡 is the Poincaré sheaf, (P0, 𝜈0).

Thus, 𝐴𝑡 has a natural group structure, and facts from the theory of algebraic groups
implies that 𝐴𝑡 is geometrically connected, finite type, and proper. In addition, Pic𝐴/𝑘 is
smooth, and 𝐴𝑡 is thus an abelian variety with dim𝐴𝑡 = dim𝐴.
Consider a map 𝑓 ∶𝑋 Ð→ 𝑌 . Then, we can consider the pullback by 𝑓 ×1∶𝑋 ×𝑌 𝑡 Ð→ 𝑌 ×𝑌 𝑡

of (P0, 𝜈0)𝑌 , giving an (𝑒𝑋 × id𝑌 𝑡 )-rigidified line bundle (𝑓 × 1)∗(P0, 𝜈0)𝑌 on 𝑋 ×𝑌 𝑡 . This
gives a unique map 𝑓 𝑡 ∶𝑌 𝑡 Ð→ 𝑋 𝑡 satisfying

(id𝑋 ×𝑓 𝑡)∗(P0, 𝜈0)𝑋 = (𝑓 × id𝑌 𝑡 )∗(P0, 𝜈0)𝑌 .
Definition 2.4. 𝑓 𝑡 ∶𝑌 𝑡 Ð→ 𝑋 𝑡 is a morphism of abelian varieties, called the dual morphism.
Theorem 2.5. If P0 is the Poincaré sheaf on 𝐴 ×𝐴𝑡 , viewed as a bundle on 𝐴𝑡 ×𝐴, it corre-
sponds to a morphism 𝐴 Ð→ (𝐴𝑡)𝑡 . This double duality morphism is an isomorphism.
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Polarizations and the Rosati Involution.

Definition 2.6. A polarization of 𝐴 is a symmetric morphism 𝜑 ∶𝐴 Ð→ 𝐴𝑡 such that

Δ∗𝐴(1 ×𝜑)∗P𝐴 = (1, 𝜑)∗P𝐴

is ample on 𝐴. In particular, 𝜑 is an isogeny.

Here, a symmetric morphism is 𝜑 ∶𝐴 Ð→ 𝐴𝑡 such that the dual 𝜑𝑡 ∶𝐴 ≃ (𝐴𝑡)𝑡 Ð→ 𝐴𝑡 is the
same as 𝜑 , or equivalently, the 𝐿𝜑 is isomorphic to the pullback of 𝐿𝜑 by the interchange
map on 𝐴 ×𝑘 𝐴. Thus, polarization is a kind of positivity condition; we can imagine that
symmetric morphisms are like symmetric bilinear forms, while a polarization is like a
positive definite form [Con].

Definition 2.7. A principal polarization of a 𝐴 is a polarization 𝜑 ∶𝐴 Ð→ 𝐴𝑡 which is an
isomorphism. A principally polarized abelian variety is a pair (𝐴,𝜑) of an abelian variety
𝐴 and a principal polarization 𝜑 ∶𝐴 ≃ 𝐴𝑡 .

Definition 2.8. For any polarization 𝜑 ∶𝐴 Ð→ 𝐴𝑡 , the Rosati involution † on End0𝑘(𝐴) is

𝜆 ↦ 𝜆† B 𝜑−1 ○ 𝜆𝑡 ○𝜑.

This is a Q-algebra anti-automorphism.

These structures, while not important for Serre-Tate, are key parts of the story of abelian
varieties, and they’ll come up next week.

3. 𝑝-Divisible Groups and Serre-Tate
The Serre-Tate theorem tells us that the deformation theory of abelian varieties is con-

trolled by their 𝑝-divisible groups, where 𝑝-divisible groups themselves are rather rigid
kinds of “ind-finite flat group schemes.” One helpful perspective to take is that the de-
formation theory of some objects (bundles, groups, elliptic curves, etc.) is studying the
(formal) smoothness of themoduli space of said objects. Thus, we’ll show how to associate
a 𝑝-divisible group to an abelian variety, and it’ll turn out that any deformation of said
𝑝-divisible group will “fix” a deformation of the whole variety. This is the key nonformal
input to Lurie’s theorem on lifting sheaves of 𝐸∞-rings, and has a wide variety of appli-
cations in number theory and other subjects. The material on 𝑝-divisible groups comes
from [EvdGM] and [You15], while the proof of Serre-Tate presented is due to Drinfeld,
and can be found in section 1 of [Kat81].

𝑝-Divisible Groups.

Definition 3.1. A 𝑝-divisible group of height ℎ 𝐺 over some base scheme 𝑆 is an fppf
abelian sheaf such that

(a) 𝐺 is 𝑝-divisible, i.e. [𝑝]∶𝐺 Ð→𝐺 is an fppf-epimorphism,
5



(b) 𝐺 is 𝑝-power torsion, i.e. 𝐺 = colim𝐺[𝑝𝑛],

(c) 𝐺[𝑝] is a finite flat group scheme of order 𝑝ℎ.

This definition is due to Grothendieck [You15], but perhaps a more familar one, due to
Tate, is to considera ind-system𝐺𝑛, 𝑛 ≥ 1 of group schemes over 𝑆 , where each𝐺𝑛 is finite
flat of order 𝑝𝑛ℎ, and for all 𝑛 ≥ 1, the sequence

1Ð→𝐺𝑛 Ð→𝐺𝑛+1
𝑝
𝑛

Ð→𝐺𝑛+1

is exact; i.e. 𝐺𝑛 should be 𝐺[𝑝𝑛] for 𝐺 = colim𝐺𝑛. Note that being a 𝑝-divisible group is
more than being literally 𝑝-divisible, so sometimes these are called Barsotti-Tate groups.
Let BT𝑝𝑛(−) denote the functor sending 𝑆 to the category of 𝑝-divisible groups over 𝑆 .

Definition 3.2. Let 𝐴/𝑘 be an abelian variety, 𝑝 a prime number. Then, the 𝑝-divisible
group of 𝐴 is the 𝑝-divisible group given by

𝑋 [𝑝∞] = colim (𝑋 [𝑝] Ð→ 𝑋 [𝑝2] Ð→ 𝑋 [𝑝3] Ð→)

where the maps are the natural inclusions. Note that 𝑋 [𝑝∞] has height 2 dim(𝑋).

This construction is also functorial: if 𝑓 ∶𝑋 Ð→ 𝑌 is a homomorphism, we get a homo-
morphism 𝑓 [𝑝∞] of 𝑝-divisible groups.
Proof of Serre-Tate.

Theorem 3.3 (Serre-Tate). Let 𝑅 be a ring in which 𝑝 is nilpotent, 𝐼 ⊂ 𝑅 is a nilpotent ideal,
𝑅0 B 𝑅/𝐼 . Let Ab(𝑅) be the category of abelian schemes over 𝑅, and let Def(𝑅,𝑅0) be the
category of triples

(𝐴0,𝐺, 𝜖)

with𝐴0 an abelian scheme over 𝑅0, a 𝑝-divisible group𝐺 over 𝑅, and an isomorphism 𝜖 ∶𝐺0 ≃
𝐴0[𝑝∞]. Then, the functor

Φ∶Ab(𝑅) Ð→ Def(𝑅,𝑅0)
𝐴 ↦ (𝐴0,𝐴[𝑝∞],natural 𝜖)

is an equivalence of categories.

More geometrically, the picture is that we have a scheme 𝑆0 (= Spec𝑅0), an infinitesimal
thickening 𝑆 , with 𝑝 locally nilpotent on 𝑆 . Then, the category of abelian varieties on 𝑆 is
equivalent to the category of abelian varieties on 𝑆0 equipped with a lift of its 𝑝-divisible
group. It’s a really deep theorem due to Messing that every 𝑝-divisible group on such an
𝑆 is formally smooth. The following proof is due to Drinfeld, as reproduced in [Kat81, §1],
although I owe much of my intuition to the fantastic blog post [You15]. To start, we’ll
need a workhorse lemma from the realm of formal geometry.
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Lemma 3.4. Let 𝑁 ≥ 1 be an integer which kills 𝑅, and 𝐼 a nilpotent ideal, with 𝐼𝜈+1 = 0.
Let 𝐺,𝐻 be fppf abelian sheaves on 𝑅 (i.e. on CAlg𝑅), such that

(a) 𝐺 is 𝑁 -divisible,

(b) 𝐻 is locally representable by a formal Lie group

(c) 𝐻 is formally smooth.

Let 𝐺0/𝐻0 denote the fibers of 𝐺,𝐻 on 𝑅0. Then

(1) The groups HomGrp(𝑅)(𝐺,𝐻) and HomGrp(𝑅0)(𝐺0, 𝐻0) are 𝑁 -torsionfree,

(2) The “reduction mod 𝐼” map Hom(𝐺,𝐻) Ð→ Hom(𝐺0, 𝐻0) is injective,

(3) For any 𝑓0∶𝐺0 Ð→ 𝐻0, there exists a unique homomorphism “𝑁 𝜈 𝑓 ” lifting 𝑁 𝜈 𝑓0.

(4) A homomorphism 𝑓0∶𝐺0 Ð→ 𝐻0 lifts to 𝑓 ∶𝐺 Ð→ 𝐻 iff “𝑁 𝜈 𝑓 ” annihilates the subgroup
𝐺[𝑁 𝜈] = ker([𝑁 𝜈]𝐺).

Proof. See [Kat81, 1.1.3]. (1) and (2) follow from the fact that 𝐺 , thus 𝐺0 are 𝑁 -divisible,
and 𝐻𝐼(𝐴) = ker(𝐻(𝐴) Ð→ 𝐻(𝐴/𝐼𝐴)) is killed by 𝑁 𝜈 .1 We can write down a lift “𝑁 𝜈 𝑓 ” as,
for any 𝐴 ∈ CAlg𝑅 ,

𝐺(𝐴) 𝐻(𝐴)

𝐺(𝐴/𝐼𝐴) 𝐻(𝐴/𝐼𝐴)

𝑁
𝜈
×any lift

“𝑁 𝜈
𝑓 ”

𝑓0

The right vertical morphism exists because we can lift 𝐻(𝐴/𝐼𝐴) Ð→ 𝐻(𝐴) via formal
smoothness, and is well-defined because the indeterminacy, in 𝐻𝐼(𝐴), is killed by 𝑁 𝜈 .
Finally, for (4), in one direction, note that any lift 𝑓 must satisfy 𝑁 𝜈 𝑓 = “𝑁 𝜈 𝑓 ”, as both

lift 𝑁 𝜈 𝑓0, so “𝑁 𝜈 𝑓 ” will annihilate 𝐺[𝑁 𝜈]. Conversely, if “𝑁 𝜈 𝑓 ” annihilates 𝐺[𝑁 𝜈], then
𝑁 -divisibility gives the following diagram:

0 𝐺[𝑁 𝜈] 𝐺 𝐺 0

𝐻

“𝑁 𝜈
𝑓 ”

𝑁
𝜈

∃𝑓

Now, to see that the homomorphism 𝑓 ∶𝐺 Ð→ 𝐻 lifts 𝑓0, note that the reduction 𝑓 /𝐼 satis-
fies 𝑁 𝜈 𝑓 /𝐼 = 𝑁 𝜈 𝑓0. Thus, as Hom(𝐺0, 𝐻0) has no 𝑁 -torsion, we conclude 𝑓 /𝐼 = 𝑓0, thus
completing the proof. □

1These facts, in turn, follow from the basic yoga of formal Lie groups, i.e. formal groups which are formal
schemes over Spf 𝐴 locally of the form Spf 𝐴[[𝑇1, . . . ,𝑇𝑚]]; these objects are what those of us coming from
homotopy theory probably think of when we hear “formal group.” The proof of 𝐻𝐼 being killed by 𝑁 𝜈 boils
down to a computation of the [𝑁 ]-series with coordinates on 𝐻 .
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Now, let 𝑁 = 𝑝𝑛, for 𝑝 a prime. We can show Φ is an equivalence in two steps:

Lemma 3.5. Φ∶Ab(𝑅) Ð→ Def(𝑅,𝑅0) is fully faithful.

Proof. Let 𝐴,𝐵 ∈ Ab(𝑅) be abelian schemes over 𝑅. Say we are given a homomorphism
𝑓 [𝑝∞]∶𝐴[𝑝∞] Ð→ 𝐵[𝑝∞] of 𝑝-divisible groups over 𝑅 and a homomorphism 𝑓0∶𝐴0 Ð→ 𝐵0
such that 𝑓0[𝑝∞] = (𝑓 [𝑝∞]0). We want to construct a unique homomorphism 𝑓 ∶𝐴 Ð→ 𝐵

inducing both 𝑓 [𝑝∞] and 𝑓0.
Using the above lemma, which applies to , uniqueness is automatic from injectivity of

Hom(𝐴,𝐵) Ð→ Hom(𝐴0, 𝐵0). Now, consider the lift “𝑁 𝜈 𝑓 ” of 𝑁 𝜈 𝑓0. We know that the
map “𝑁 𝜈 𝑓 ”[𝑝∞] must lift 𝑁 𝜈(𝑓0[𝑝∞]), and as 𝑁 𝜈 𝑓 [𝑝∞] is already such a lift, we know
“𝑁 𝜈 𝑓 ”[𝑝∞] = 𝑁 𝜈(𝑓 [𝑝∞]), so “𝑁 𝜈 𝑓 ” kills 𝐴[𝑁 𝜈]. Thus, the lemma gives a lift 𝐹 of 𝑓0, with
𝐹 [𝑝∞] lifting 𝑓0[𝑝∞], so that 𝐹 [𝑝∞] = 𝑓 [𝑝∞]. □

Lemma 3.6. Φ is essentially surjective.

Proof. Say we are given (𝐴0,𝐺, 𝜖) ∈ Def(𝑅,𝑅0). Our goal is to lift this data to an abelian
scheme 𝐴 over 𝑅 which maps to this triple. First, it turns out that we can always find
an abelian scheme 𝐵 over 𝑅 which lifts 𝐴0; said more intuitively, the “moduli of abelian
schemes is smooth,” at least in spirit – one can check by hand that the obstruction class to
this lifting vanishes by using the multiplication on 𝐴0. Let 𝛼0∶𝐵0

≃Ð→ 𝐴0, which induces an
isomorphism of 𝑝-divisible groups 𝛼0[𝑝∞]. Now 𝑁 𝜈𝛼0[𝑝∞] uniquely lifts to a morphism
of 𝑝-divisible groups

“𝑁 𝜈𝛼[𝑝∞]”∶𝐵[𝑝∞] Ð→𝐺,

and this turns out to be an isogeny. The canonical lift of𝑁 𝜈×(𝛼0[𝑝∞])−1, from𝐺 to 𝐵[𝑝∞]
composes with this map in either direction to give the endomorphism 𝑁 2𝜈 , so we have an
inverse up to isogeny.
Therefore, we get a short exact sequence

0Ð→ 𝐾 Ð→ 𝐵[𝑝∞] Ð→𝐺 Ð→ 0,

with 𝐾 ⊂ 𝐵[𝑁 2𝜈]. By algebraic geometry magic (“applying the criterion of flatness fiber-
by-fiber”) we can conclude that “𝑁 𝜈𝛼[𝑝∞]” is flat, as the reduction mod 𝐼 , multiplication
by 𝑁 𝜈 times an isomorphism, is itself flat. Thus, 𝐾 is a finite flat subgroup of 𝐵[𝑝2𝑛𝜈],
so we can define the quotient abelian scheme 𝐴 B 𝐵/𝐾 . Now, 𝐾 lifts 𝐵0[𝑁 𝜈], so 𝐴 lifts
𝐵0/𝐵0[𝑁 𝜈] ≃ 𝐵0 ≃ 𝐴0, and we get a compatible isomorphism

𝐴[𝑝∞] ≃ 𝐵[𝑝∞]/𝐾 ≃Ð→𝐺.

□
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In the context of Lurie’s theorem, we can restate this as follows [Dav22, 2.7]. Suppose
𝑅 Ð→ 𝑅 is a square-zero extension of discrete commutative rings, with 𝑝 nilpotent. Serre-
Tate says that the diagram of 1-groupoids

Ab𝑔(𝑅)≃ Ab𝑔(𝑅)≃

BT𝑝2𝑔(𝑅)≃ BT𝑝2𝑔(𝑅)≃

is Cartesian. Thus, the morphism [𝑝∞]∶ℳAb𝑔 Ð→ℳBT𝑝2𝑔
of classical moduli stacks sending

an abelian variety of dimension 𝑔 to its associated 𝑝-divisible group is formally étale after
base change over Spf Z𝑝 .
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